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Lecture 4a

Matrix Multiplication

Upcoming:

• Reading HW 4a (Thurs)

• In-class Quiz (Fri)

• Worksheet (Sun)
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Recall from lecture 3b: Multiplying a matrix and a vector

Given a m ⇥ n-matrix A and an n-vector v, Av is the m-vector
whose ith entry is the dot product of the ith row of A with v.

Example: Multiplying a 3⇥ 3 matrix and a 3-vector
2

4
2 �3 4
�2 2 �3
�3 4 2

3

5

2

4
2
1
�1

3

5 =

2

4
2 · 2 + (�3) · 1 + 4 · (�1)
�2 · 2 + 2 · 1� 3 · (�1)
�3 · 2 + 4 · 1 + 2 · (�1)

3

5 =

2

4
3
1
�4

3

5

Goal for lecture 4a

Multiplying a matrix by a marix.

A v
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Denoting a specific entry of a matrix

The (i , j)th entry of a matrix A is the entry in the ith row and
the jth column, and is denoted Ai ,j or ai ,j .

Example

The (2, 3)th entry of the following matrix is 2.
1 �1 2 �2
0 1 2 0

�

This notation counts down then over, unlike Cartesian coordinates.


(1, 1) (1, 2) (1, 3) (1, 4
(2, 1) (2, 2) (2,3) (2, 4)

�
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Matrix multiplication: the idea

Given matrices A and B, the product AB is the matrix whose
(i , j)th entry is the dot product of row i of A and column j of B.

To compute the (i , j)-entry of AB , do:

Go across row i of A, and down column j of B , multiply
corresponding entries, and add the results.

2

4

3

5

2

4

3

5 =

2

4

3

5

row i column j (i , j)-entry

A B AB

The rows of A must be the same length as the columns of B .
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Matrix multiplication: the formula

The product AB is a matrix whose (i , j)th entry is the sum of the
product of the row i of A with the column j of B.

2

664

...
...

...
...

ai ,1 ai ,2 · · · ai ,n
...

...
...

...

3

775

2

6664

· · · b1,j · · ·
· · · b2,j · · ·

· · ·
... · · ·

· · · bn,j · · ·

3

7775

=

2

664

. . .
...

. . .
· · · ai ,1b1,j + ai ,2b2,j + ...+ ai ,nbn,j · · ·
. . .

...
. . .

3

775



6/16

Denoting an entry Matrix multiplication Dimensions must match! Matrix multiplication is not commutative

Exercise 1

Compute the (1, 3)- and (2, 4)-entries of AB where

A =


3 �1 2
0 1 4

�
and B =

2

4
2 1 6 0
0 2 3 4

�1 0 5 8

3

5 .

Then compute AB .
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The (1, 3)th-entry of AB is the dot product of row 1 of A and
column 3 of B (highlighted in the following display), computed by
multiplying corresponding entries and adding the results.


3 �1 2
0 1 4

�2

4
2 1 6 0
0 2 3 4

�1 0 5 8

3

5

(1, 3)-entry = 3 · 6 + (�1) · 3 + 2 · 5 = 25


· · 25 ·
· · · ·

�

c
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Similarly, the (2, 4)-entry of AB involves row 2 of A and column 4
of B .


3 �1 2
0 1 4

�2

4
2 1 6 0
0 2 3 4

�1 0 5 8

3

5

(2, 4)-entry = 0 · 0 + 1 · 4 + 4 · 8 = 36


· · 25 ·
· · · 36

�

Pause the video and compute the rest of the entries of AB .

A B AB

Dimensions 2 3 3 4 2 4
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AB =


3 �1 2
0 1 4

�2

4
2 1 6 0
0 2 3 4

�1 0 5 8

3

5 =


4 1 25 12

�4 2 23 36

�
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Dimensions must match!

For AB to exist, we need

width(A) = height(B)

Size of a product

If A is m ⇥ n and B is n ⇥ p, then AB is m ⇥ p.

It can be helpful to think of the middle dimensions as cancelling:

(m ⇥���n)(n ⇥ p) = m ⇥ p
If the middle dimensions don’t agree, the product doesn’t exist!
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Exercise 2(i)

Compute the product

1 2 �1
1 0 2

�2

4
2 1
�1 3
0 1

3

5 IBJ 1.2 0 1 2.0 1.1 0.3 2.1

A B AB

Dimensions 2 3 3 2 2 2
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Exercise 2(i) (solution)

Compute the product
1 2 �1
1 0 2

�2

4
2 1
�1 3
0 1

3

5 =

=


0 6
2 3

�
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Exercise 2(ii)

Compute the product2

4
2 1
�1 3
0 1

3

5

1 2 �1
1 0 2

�

B A
3 2 2 3

AB

3 3
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Exercise 2(ii) (solution)

Compute the product2

4
2 1
�1 3
0 1

3

5

1 2 �1
1 0 2

�
=

=

2

4
3 4 0
2 �2 7
1 0 2

3

5
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Order matters in matrix multiplication!

We have seen that


1 2 �1
1 0 2

�2

4
2 1
�1 3
0 1

3

5 =


0 6
2 3

�
6=

2

4
2 1
�1 3
0 1

3

5

1 2 �1
1 0 2

�

This means that matrix multiplication is not always commutative!

That is, AB is usually not equal to BA, though it can happen.

Exercise 3

Check whether the following matrices commute.
1 �2
1 2

�
and


1 6
�3 �2

�

Answer
Yes they
commute

f
1 2.63 1.6

241 2 31.6 2.2
DIFF

1.1 6.1 1 2 6.2
1 Itf It 2.1 3 2 2.2
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Order matters in matrix multiplication!

Matrix multiplication is not always commutative!

That is, AB is usually not equal to BA, though it can happen.

Exercise 3 (solution)

Check whether the following matrices commute.
1 �2
1 2

�
and


1 6
�3 �2

�


1 �2
1 2

� 
1 6
�3 �2

�
= =


7 10
�5 2

�


1 6
�3 �2

� 
1 �2
1 2

�
= =


7 10
�5 2

�


