| Zero matrices | Multiplying a matrix and a vector: Motivation | Multiplying a matrix and a vector: Definition | Identity matrices |
|---------------|-----------------------------------------------|-----------------------------------------------|-------------------|
| 0             | 00000                                         | 000000                                        | 00                |

#### Lecture 3b

# Matrices and Vectors: matrix-vector multiplication

# Upcoming:

Reading HW 3b

| Zero matrices | Multiplying a matrix and a vector: Motivation | Multiplying a matrix and a vector: Definition | Identity matrices |
|---------------|-----------------------------------------------|-----------------------------------------------|-------------------|
| 0             | 00000                                         | 000000                                        | 00                |

#### Last Time

- Matrices and vectors
- Matrix addition
- Scalar multiplication
- Linear combinations (combinations of the operations above)
- Transposes

# Plan

- Zero matrices
- Matrix multiplication : multiplying a matrix & a vector
- Identity matrices

| Zero matrices | Multiplying a matrix and a vector: Motivation | Multiplying a matrix and a vector: Definition | Identity matrices |
|---------------|-----------------------------------------------|-----------------------------------------------|-------------------|
|               | 00000                                         | 000000                                        | 00                |
|               |                                               |                                               |                   |

# Zero matrices

#### Zero matrices

A zero matrix is a matrix whose entries are all zero.

Confusingly, people usually denote these by  ${\bf 0}$  and hope the size is clear.

Example  
If A = 
$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$
, then A + 0 means  $\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1+0, 2+0, 3+6 \\ 4+0, 5+0, 6+0 \end{bmatrix}$ 

#### Adding zero doesn't change anything

As long as A and 0 have the same size, A + 0 = A.

# Multiplying a matrix and a vector: Motivation

#### Next up:

Multiplying a matrix and a vector.

#### Motivating question

How can we check a potential solution of a linear system, directly from the **augmented matrix**?

| Zero matrices | Multiplying a matrix and a vector: Motivation | Multiplying a matrix and a vector: Definition | Identity matrices |
|---------------|-----------------------------------------------|-----------------------------------------------|-------------------|
| 0             | 0000                                          | 000000                                        | 00                |

Let's recap a familiar computation.

#### Recap: checking a solution

Consider the linear system

$$2x - 3y + 4z = -3$$
$$-2x + 2y - 3z = 1$$
$$-3x + 4y + 2z = -4$$

To check whether x = 2, y = 1, z = -1 is a solution, we plug in:

$$2 -3 + 4 \cdot ( ) = \checkmark$$

$$-2 + 2 - 3 \cdot ) = \checkmark$$

$$-3 + 4 + 2 \cdot ( ) = \checkmark$$

| Zero matrices | Multiplying a matrix and a vector: Motivation | Multiplying a matrix and a vector: Definition | Identity matrices |
|---------------|-----------------------------------------------|-----------------------------------------------|-------------------|
| 0             | 0000                                          | 000000                                        | 00                |

Let's recap a familiar computation.

#### Recap: checking a solution

Consider the linear system

$$2x - 3y + 4z = -3$$
$$-2x + 2y - 3z = 1$$
$$-3x + 4y + 2z = -4$$

To check whether x = 2, y = 1, z = -1 is a solution, we plug in:

$$2 \cdot 2 - 3 \cdot 1 + 4 \cdot (-1) = 4 - 3 - 4 = -3 \quad \checkmark$$
$$-2 \cdot 2 + 2 \cdot 1 - 3 \cdot (-1) = -4 + 2 + 3 = 1 \quad \checkmark$$
$$-3 \cdot 2 + 4 \cdot 1 + 2 \cdot (-1) = -6 + 4 - 2 = -4 \quad \checkmark$$
Therefore,  $(x, y, z) = (2, 1, -1)$  is a solution.

Zero matrices Multiplying a matrix and a vector: Motivation O0000 Multiplying a matrix and a vector: Definition Identity matrices

To check a solution, it will be helpful to split the augmented matrix

$$2x - 3y + 4z = -3$$
  

$$-2x + 2y - 3z = 1 \quad \mapsto \begin{bmatrix} 2 & -3 & 4 & | & -3 \\ -2 & 2 & -3 & | & 1 \\ -3 & 4 & 2 & | & -4 \end{bmatrix}$$

...into a matrix A of coefficients and a vector **b** of constants:



The potential solution can also be collected into a vector:

Potential x=2, y=1, Z=-1 
$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \\ -1 \end{bmatrix}$$

| Zero matrices | Multiplying a matrix and a vector: Motivation | Multiplying a matrix and a vector: Definition | Identity matrices |
|---------------|-----------------------------------------------|-----------------------------------------------|-------------------|
| 0             | 00000                                         | 000000                                        | 00                |



Each row of A represents one equation. Let's focus on the first row.

#### Plugging into a single formula

Plugging x = 2, y = 1, z = -1 into the first formula

$$2x - 3y + 4z = 2 \cdot 2 - 3 \cdot 1 + 4 \cdot (-1)$$

becomes the following

$$\begin{bmatrix} 2 & -3 & 4 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \\ -1 \end{bmatrix} = 2 \cdot 2 + (-3) \cdot 1 + 4 \cdot (-1) = -3$$

| Zero matrices | Multiplying a matrix and a vector: Motivation | Multiplying a matrix and a vector: Definition | Identity matrices |
|---------------|-----------------------------------------------|-----------------------------------------------|-------------------|
| 0             | 00000                                         | 000000                                        | 00                |

#### We can plug into all three equations at the same time.



| Zero matrices | Multiplying a matrix and a vector: Motivation | Multiplying a matrix and a vector: Definition | Identity matrices |
|---------------|-----------------------------------------------|-----------------------------------------------|-------------------|
| 0             | 00000                                         | 000000                                        | 00                |

#### We can plug into all three equations at the same time.

# Plugging into several formulas Plugging x = 2, y = 1, z = -1 into the formulas 2x - 3y + 4z -2x + 2y - 3z -3x + 4y + 2zcan be translated into the following computation. $\begin{bmatrix} 2 & -3 & 4 \end{bmatrix} \begin{bmatrix} 2 \end{bmatrix} \begin{bmatrix} 2 \cdot 2 + (-3) \cdot 1 + 4 \cdot (-1) \end{bmatrix} \begin{bmatrix} -3 \end{bmatrix}$

$$\begin{bmatrix} 2 & 3 & 4 \\ -2 & 2 & -3 \\ -3 & 4 & 2 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 2 & 2 & 4 & (-3) & (-1) \\ -2 & 2 & 2 & (-3) & (-1) \\ -3 & 2 & 4 & (-1) \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \\ -4 \end{bmatrix}$$



# Multiplying a matrix and a vector: Definition

Definition: Multiplying a matrix and a vector

A matrix A and vector v can by multiplied if

$$\operatorname{width}(A) = \operatorname{height}(v)$$

The product Av is a vector whose *i*th entry is the sum of the product of the entries of the *i*th row of A with the entries of v.  $\begin{bmatrix}
v_{1} & \cdots & v_{n} \\
\vdots & \vdots & \vdots \\
a_{i,1} & a_{i,2} & \cdots & a_{i,n} \\
\vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots \\
\end{bmatrix}
\begin{bmatrix}
v_{1} \\
v_{2} \\
\vdots \\
v_{n}
\end{bmatrix}
=
\begin{bmatrix}
v_{1} \\
v_{2} \\
\vdots \\
v_{n}
\end{bmatrix}
=
\begin{bmatrix}
u_{1} \\
v_{1} \\
v_{2} \\
\vdots \\
u_{n}
\end{bmatrix}
=
\begin{bmatrix}
u_{1} \\
v_{2} \\
\vdots \\
u_{n}
\end{bmatrix}
=
\begin{bmatrix}
u_{1} \\
v_{2} \\
\vdots \\
u_{n}
\end{bmatrix}
=
\begin{bmatrix}
u_{1} \\
v_{2} \\
\vdots \\
u_{n}
\end{bmatrix}
=
\begin{bmatrix}
u_{1} \\
v_{2} \\
\vdots \\
u_{n}
\end{bmatrix}
=
\begin{bmatrix}
u_{1} \\
v_{2} \\
\vdots \\
u_{n}
\end{bmatrix}
=
\begin{bmatrix}
u_{1} \\
v_{2} \\
\vdots \\
u_{n}
\end{bmatrix}
=
\begin{bmatrix}
u_{1} \\
v_{2} \\
\vdots \\
u_{n}
\end{bmatrix}
=
\begin{bmatrix}
u_{1} \\
v_{2} \\
\vdots \\
u_{n}
\end{bmatrix}
=
\begin{bmatrix}
u_{1} \\
v_{2} \\
\vdots \\
u_{n}
\end{bmatrix}
=
\begin{bmatrix}
u_{1} \\
v_{2} \\
\vdots \\
u_{n}
\end{bmatrix}
=
\begin{bmatrix}
u_{1} \\
v_{2} \\
\vdots \\
u_{n}
\end{bmatrix}
=
\begin{bmatrix}
u_{1} \\
v_{2} \\
\vdots \\
u_{n}
\end{bmatrix}
=
\begin{bmatrix}
u_{1} \\
v_{2} \\
\vdots \\
u_{n}
\end{bmatrix}$ 

If width(A)  $\neq$  height(v), then the product Av doesn't make sense!

| Zero matrices | Multiplying a matrix and a vector: Motivation | Multiplying a matrix and a vector: Definition | Identity matrices |
|---------------|-----------------------------------------------|-----------------------------------------------|-------------------|
| 0             | 00000                                         | 000000                                        | 00                |

# Exercise 3

Compute the following products.

a) 
$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$$
  
b)  $\begin{bmatrix} 1 & -1 & 2 & -2 \\ 0 & 1 & 2 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$ 

| Zero matrices | Multiplying a matrix and a vector: Motivation | Multiplying a matrix and a vector: Definition | Identity matrices |
|---------------|-----------------------------------------------|-----------------------------------------------|-------------------|
| 0             | 00000                                         | 000000                                        | 00                |

#### Exercise 3 (solution)

Compute the following products.



| Zero matrices | Multiplying a matrix and a vector: Motivation | Multiplying a matrix and a vector: Definition | Identity matrices |
|---------------|-----------------------------------------------|-----------------------------------------------|-------------------|
| 0             | 00000                                         | 000000                                        | 00                |



| Zero matrices | Multiplying a matrix and a vector: Motivation | Multiplying a matrix and a vector: Definition | Identity matrices |
|---------------|-----------------------------------------------|-----------------------------------------------|-------------------|
| 0             | 00000                                         | 0000000                                       | 00                |

#### Turning a linear system into a matrix equation

Consider a linear system, and let

- A be the matrix of coefficients,
- b be the vector of constants, and
- x be the vector of variables.

Then the linear system can be rewritten as the vector equation

Ax = b

# Example 2x - 3y + 4z = -3 -2x + 2y - 3z = 1 -3x + 4y + 2z = -4 $\begin{bmatrix} 2 & -3 & 4 \\ -2 & 2 & -3 \\ -3 & 4 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 3 \\ 1 \\ -4 \end{bmatrix}$

| Zero I<br>O | matrices | Multiplying a matrix and a | vector: Motivation                                                  | Multiplying a matrix and a vector:                                                      | Definition | Identity matrices |
|-------------|----------|----------------------------|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------|-------------------|
|             | Exer     | cise 4                     |                                                                     |                                                                                         |            |                   |
|             | Chec     | k that                     |                                                                     |                                                                                         |            |                   |
|             | is a s   | solution to the m          | $\begin{bmatrix} x \\ y \\ z \end{bmatrix} =$                       | $= \begin{bmatrix} 1\\ -2\\ 1 \end{bmatrix}$                                            |            |                   |
|             |          |                            | $\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$ | $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ |            |                   |
|             | _        |                            |                                                                     |                                                                                         |            |                   |

| Zero matrices | Multiplying a matrix and a vector: Motivation | Multiplying a matrix and a vector: Definition | Identity matrices |
|---------------|-----------------------------------------------|-----------------------------------------------|-------------------|
| 0             | 00000                                         | 000000                                        | 00                |

# Exercise 4

Check that

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$$

is a solution to the matrix equation

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

# Solution:



#### Identity matrices

For a positive integer *n*, the  $n \times n$  identity matrix is the  $n \times n$  matrix whose diagonal entries are 1 and whose other entries are 0.

People often denote identity matrices by Id, again hoping the size is clear.

Multiplying by an identity matrix doesn't change a vector (assuming the sizes are such that the product is defined).

#### Example

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 4 \\ -1 \\ 2 \end{bmatrix} = \begin{bmatrix} 1.4 + 0.-1 + 0.2 \\ 0.4 + 1.-1 + 0.2 \\ 0.4 + 0.-1 + 1.2 \end{bmatrix} = \begin{bmatrix} 4 \\ -1 \\ 2 \end{bmatrix}$$

Identity matrices must be **square**; that is, its height equals its width.

| Zero matrices | Multiplying a matrix and a vector: Motivation | Multiplying a matrix and a vector: Definition | Identity matrices |
|---------------|-----------------------------------------------|-----------------------------------------------|-------------------|
| 0             | 00000                                         | 000000                                        | 00                |

#### Recap

- Zero matrices
- Matrix-vector multiplication
- Identity matrices

# Next time

How and why to multiply two matrices.