Lecture 3b

Matrices and Vectors: matrix-vector multiplication

Upcoming:

Reading HW 3b

Last Time

- Matrices and vectors
- Matrix addition
- Scalar multiplication
- Linear combinations (combinations of the operations above)
- Transposes

Plan

- Zero matrices
- Matrix multiplication: multiplying a matrix \& a vector
- Identity matrices

Zero matrices

Zero matrices

A zero matrix is a matrix whose entries are all zero.
Confusingly, people usually denote these by $\mathbf{0}$ and hope the size is clear.

Example
If $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right]$, then $A+0$ means $\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right]+\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]=\left[\begin{array}{l}1+0,2+0,3+0 \\ 4+0,5+0,6+0\end{array}\right]$

Adding zero doesn't change anything

As long as A and 0 have the same size, $A+0=A$.

Multiplying a matrix and a vector: Motivation

Next up:
Multiplying a matrix and a vector.

Motivating question

How can we check a potential solution of a linear system, directly from the augmented matrix?

Let's recap a familiar computation.

Recap: checking a solution

Consider the linear system

$$
\begin{aligned}
2 x-3 y+4 z & =-3 \\
-2 x+2 y-3 z & =1 \\
-3 x+4 y+2 z & =-4
\end{aligned}
$$

To check whether $x=2, y=1, z=-1$ is a solution, we plug in:

$$
\begin{array}{rlll}
2 & -3 & +4 \cdot(&) \\
-2 \cdot & +2 & -3 \cdot &) \\
-3 & +4 & +2 \cdot(&)
\end{array}
$$

Let's recap a familiar computation.

Recap: checking a solution

Consider the linear system

$$
\begin{aligned}
2 x-3 y+4 z & =-3 \\
-2 x+2 y-3 z & =1 \\
-3 x+4 y+2 z & =-4
\end{aligned}
$$

To check whether $x=2, y=1, z=-1$ is a solution, we plug in:

$$
\begin{aligned}
2 \cdot 2-3 \cdot 1+4 \cdot(-1) & =4-3-4=-3 \\
-2 \cdot 2+2 \cdot 1-3 \cdot(-1) & =-4+2+3=1 \\
-3 \cdot 2+4 \cdot 1+2 \cdot(-1) & =-6+4-2=-4
\end{aligned}
$$

Therefore, $(x, y, z)=(2,1,-1)$ is a solution.

To check a solution, it will be helpful to split the augmented matrix

$$
\begin{aligned}
2 x-3 y+4 z & =-3 \\
-2 x+2 y-3 z & =1 \\
-3 x+4 y+2 z & =-4
\end{aligned} \mapsto\left[\begin{array}{ccc|c}
2 & -3 & 4 & -3 \\
-2 & 2 & -3 & 1 \\
-3 & 4 & 2 & -4
\end{array}\right]
$$

...into a matrix A of coefficients and a vector b of constants:

$$
\begin{gathered}
\text { matrix of } \\
\text { coefficients }
\end{gathered}=\underbrace{\left[\begin{array}{ccc}
2 & -3 & 4 \\
-2 & 2 & -3 \\
-3 & 4 & 2
\end{array}\right]}_{A}, \begin{gathered}
\text { vector of } \\
\text { constants }
\end{gathered}=\underbrace{\left[\begin{array}{c}
-3 \\
1 \\
-4
\end{array}\right]}_{b}
$$

The potential solution can also be collected into a vector:

$$
\begin{aligned}
& \text { Potential } \\
& \text { Solution }
\end{aligned} x=2, y=1, z=-1 \quad\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
2 \\
1 \\
-1
\end{array}\right]
$$

Each row of A represents one equation. Let's focus on the first row.

Plugging into a single formula

Plugging $x=2, y=1, z=-1$ into the first formula
becomes the following

$$
2 x-3 y+4 z(=2 \cdot 2-3 \cdot 1+4 \cdot(-1))
$$

$$
\left[\begin{array}{lll}
2 & -3 & 4
\end{array}\right]\left[\begin{array}{c}
2 \\
1 \\
-1
\end{array}\right]=2 \cdot 2+(-3) \cdot 1+4 \cdot(-1)=-3
$$

We can plug into all three equations at the same time.

Plugging into several formulas

Plugging $x=2, y=1, z=-1$ into the formulas

$$
\begin{array}{r}
2 x-3 y+4 z \\
-2 x+2 y-3 z \\
-3 x+4 y+2 z
\end{array}
$$

can be translated into the following computation.

We can plug into all three equations at the same time.

Plugging into several formulas

Plugging $x=2, y=1, z=-1$ into the formulas

$$
\begin{array}{r}
2 x-3 y+4 z \\
-2 x+2 y-3 z \\
-3 x+4 y+2 z
\end{array}
$$

can be translated into the following computation.

$$
\left[\begin{array}{ccc}
2 & -3 & 4 \\
-2 & 2 & -3 \\
-3 & 4 & 2
\end{array}\right]\left[\begin{array}{c}
2 \\
1 \\
-1
\end{array}\right]=\left[\begin{array}{c}
2 \cdot 2+(-3) \cdot 1+4 \cdot(-1) \\
-2 \cdot 2+2 \cdot 1-3 \cdot(-1) \\
-3 \cdot 2+4 \cdot 1+2 \cdot(-1)
\end{array}\right]=\left[\begin{array}{c}
-3 \\
1 \\
-4
\end{array}\right]
$$

Multiplying a matrix and a vector: Definition

Definition: Multiplying a matrix and a vector

A matrix A and vector v can by multiplied if

$$
\operatorname{width}(\mathrm{A})=\operatorname{height}(\mathrm{v})
$$

The product $A v$ is a vector whose i th entry is the sum of the product of the entries of the i th row of A with the entries of v.

If width $(A) \neq \operatorname{height}(v)$, then the product $A v$ doesn't make sense!

Exercise 3

Compute the following products.
a) $\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right]\left[\begin{array}{c}1 \\ -1 \\ 1\end{array}\right]$
b) $\left[\begin{array}{cccc}1 & -1 & 2 & -2 \\ 0 & 1 & 2 & 0\end{array}\right]\left[\begin{array}{l}2 \\ 3 \\ 4\end{array}\right]$

Exercise 3 (solution)

Compute the following products.
a)
$\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right]\left[\begin{array}{c}1 \\ -1 \\ 1\end{array}\right]=\left[\begin{array}{l}1.1+2 .-1+3.1 \\ 4.1+5 .-1+6.1 \\ 7.1+8 .-1+9.1\end{array}\right]=\left[\begin{array}{l}2 \\ 5 \\ 8\end{array}\right]$

b) | 1 | -1 | 2 | -2 |
| :---: | :---: | :---: | :---: |
| 0 | 1 | 2 | 0 |

$$
\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right] \stackrel{\rightarrow}{\rightarrow}\left[\begin{array}{l}
1.1+-1.2+2.3+-2.4 \\
0.1+1.2+2.3+0.4
\end{array}\right]=\left[\begin{array}{c}
-3 \\
8
\end{array}\right]
$$

Sizes in matrix-vector multiplication
The product of an $m \times n$-matrix and an n-vector is an m-vector.

will always be the same as the height of the matrix

Trick to remember:

$$
m \times 1
$$

Turning a linear system into a matrix equation

Consider a linear system, and let

- A be the matrix of coefficients,
- b be the vector of constants, and
- x be the vector of variables.

Then the linear system can be rewritten as the vector equation

$$
A x=b
$$

Example

$$
\begin{aligned}
2 x-3 y+4 z & =-3 \\
-2 x+2 y-3 z & =1 \\
-3 x+4 y+2 z & =-4
\end{aligned} \text { 㫬 } 4 \underbrace{\left[\begin{array}{ccc}
2 & -3 & 4 \\
-2 & 2 & -3 \\
-3 & 4 & 2
\end{array}\right]}_{\mathrm{A}} \underbrace{\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]}_{\mathrm{x}}=\underbrace{\left[\begin{array}{c}
3 \\
1 \\
-4
\end{array}\right]}_{\mathrm{b}}
$$

Exercise 4

Check that

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right]
$$

is a solution to the matrix equation

$$
\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Exercise 4
Check that

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right]
$$

is a solution to the matrix equation

$$
\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Solution:

The answer is Yes

Identity matrices

For a positive integer n, the $n \times n$ identity matrix is the $n \times n$ matrix whose diagonal entries are 1 and whose other entries are 0 .

People often denote identity matrices by Id, again hoping the size is clear.

Multiplying by an identity matrix doesn't change a vector (assuming the sizes are such that the product is defined).

Example

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
4 \\
-1 \\
2
\end{array}\right]=\left[\begin{array}{l}
1.4+0 .-1+0.2 \\
0.4+1 .-1+0.2 \\
0.4+0 .-1+1.2
\end{array}\right]=\left[\begin{array}{c}
4 \\
-1 \\
2
\end{array}\right]
$$

Identity matrices must be square; that is, its height equals its width.

Recap

- Zero matrices
- Matrix-vector multiplication
- Identity matrices

Next time

How and why to multiply two matrices.

