Lecture 2b

Gaussian Elimination (con't)

Last time

- A definition for systems that can be 'easily solved': Row echelon form (REF)
- An algorithm for picking which elementary operation to use: Gaussian elimination
- Knowing when there are no solutions, a unique solution, or multiple solutions.

Note: When we say a system has a unique solution, this means the system has exactly one solution.

Today

- Rank of a matrix
- Homogeneous system

The number and location of leading $1 s$ is a useful fact.

Rank of a matrix

The rank of a matrix is the number of leading 1 s in any equivalent REF matrix.

To find the rank, we can use a sequence of elementary row operations (like Gaussian Elimination) to put it in REF.

Exercise 4

Let

$$
M=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 3 \\
1 & 3 & 5
\end{array}\right]
$$

Find the rank of M.

A matrix might be equivalent to more than one REF matrix, but they all have the same number of leading 1 s !

$$
\begin{aligned}
& \boldsymbol{M}=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 3 \\
1 & 3 & 5
\end{array}\right] \xrightarrow[R_{2}-R_{1}]{R_{3}-R_{1}}\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 2 \\
0 & 2 & 4
\end{array}\right] \\
& \xrightarrow[R_{3}-2 R_{2}]{\longrightarrow}\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 2 \\
0 & 0 & 0
\end{array}\right] \\
& \boldsymbol{M}=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 3 \\
1 & 3 & 5
\end{array}\right] \longrightarrow_{R_{1}}^{R_{1}}\left[\begin{array}{lll}
1 & 2 & 3 \\
1 & 1 & 1 \\
1 & 3 & 5
\end{array}\right] \\
& \xrightarrow[\substack{R_{2}-R_{1} \\
R_{3}-R_{1}}]{\longrightarrow}\left[\begin{array}{ccc}
1 & 2 & 3 \\
0 & -1 & -2 \\
0 & 1 & 2
\end{array}\right] \\
& \xrightarrow[R_{2}+R_{3}]{ }\left[\begin{array}{ccc}
1 & 2 & 3 \\
0 & -1 & -2 \\
0 & 0 & 0
\end{array}\right] \\
& \xrightarrow[R_{2}]{ }\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 1 & 2 \\
0 & 0 & 0
\end{array}\right] \\
& \text { An REF matrix } \\
& \text { equivalent } \\
& \text { to M } \\
& \text { A different } \\
& \text { REF matrix } \\
& \text { also equivalent } \\
& \text { to M }
\end{aligned}
$$

Note: Both REF matrices have the same number of leading is

All matrices on this page (incl. M) are of rank 2 because they are all equivalent to an REF matrix with two leading is.

The \# of leading 1's cannot be bigger than \# of columns
Bounds on rank
The rank of a matrix is at most the number of rows, and at most the number of columns.

Knowing the rank tells us 'how big' the solution set is.
Rank and solutions
Consider you have a linear system in n-many variables whose aug. matrix has rank r. If it's consistent, the set of solutions has $(n-r)$-many parameters. (aka. has at least

In particular, if it is consistent...
it has a unique solution if $n=r$, and

$$
r=2
$$

it has infinitely many solutions if $n>r$.

Let's finish by considering an important class of SLEs.

Homogeneous systems of linear equations

A system is homogeneous if each constant term is 0 .

Example

$$
\begin{array}{r}
x+y+z=0 \\
x+2 y+3 z=0 \\
x+3 y+5 z=0
\end{array}
$$

$\left[\begin{array}{lll|l}1 & 1 & 1 & 0 \\ 1 & 2 & 3 & 0 \\ 1 & 3 & 5 & 0\end{array}\right] \varnothing$

For aug. matrices, homogeneous means the right column is all 0s.

A simple observation

A homogeneous SLE has a solution in which every variable is 0 .
Therefore, every homogeneous SLE is consistent.

An easy fact

Elementary operations don't change homogeneity.
That is, if the right column is 0 s , it will stay 0 s .

A time-saver

When solving homogeneous SLEs, you can suppress the last column of the aug. matrix...just don't forget about the hidden column!

Exercise 5

a) Find all the solutions to the following system of linear equations.

$$
\begin{array}{r}
x+y+z=0 \\
x+2 y+3 z=0 \\
x+3 y+5 z=0
\end{array}
$$

b) Find the rank of the corresponding aug. matrix

Reduce the augmented matrix

$$
\left.\begin{array}{c}
{\left[\begin{array}{lll|l}
1 & 1 & 1 & 0 \\
1 & 2 & 3 & 0 \\
1 & 3 & 5 & 0
\end{array}\right]} \\
\underset{\substack{R_{2}-R_{1} \\
R_{3}-R_{1}}}{\longrightarrow}\left[\begin{array}{lll|l}
1 & 1 & 1 & 0 \\
0 & 1 & 2 & 0 \\
0 & 2 & 4 & 0
\end{array}\right] \\
\\
\end{array}\left[\begin{array}{lll|l}
1 & 1 & 1 & 0 \\
0 & 1 & 2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]\right]
$$

$\left[\begin{array}{l}\text { Note from instructor: } \\ \text { Column } 3 \text { does not have a leading 1, } \\ \text { so pick a parameter for the variable } z\end{array}\right]$
Let $z=t$
Eq. 2: $y+2 z=0$ implies $y+2 t=0$, so $y=-2 t$
Eq. $3: x+y+z=0$ implies $x+(-2 t)+t=0$, so $x=t$
All (infinitely many) solutions are of the form $(x, y, z)=(t,-2 t, t)$, where t is a number
b) The rank of the matrix $\left[\begin{array}{llll}1 & 1 & 1 & 0 \\ 1 & 2 & 3 & 0 \\ 1 & 3 & 5 & 0\end{array}\right]$ is the number of leading 1 s in any REF matrix equivalent to $\left[\begin{array}{llll}1 & 1 & 1 & 0 \\ 1 & 2 & 3 & 0 \\ 1 & 3 & 5 & 0\end{array}\right]$ (from the def in slide \#3).

Since $\left[\begin{array}{llll}1 & 1 & 1 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$ is an REF matrix equivalent to $\left[\begin{array}{llll}1 & 1 & 1 & 0 \\ 1 & 3 & 3 & 0 \\ 1 & 3 & 5 & 0\end{array}\right]$, and since there are two leading is in $\left[\begin{array}{llll}1 & 1 & 1 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$,
$\left[\begin{array}{llll}1 & 1 & 1 & 0\end{array}\right]$ the rank of $\left[\begin{array}{llll}1 & 1 & 1 & 0 \\ 1 & 2 & 3 & 0 \\ 1 & 3 & 5 & 0\end{array}\right]$ is 2 .

Find all solutions to the following homogeneous system.

Exercise 6

$$
\begin{aligned}
x_{1}-x_{2}+2 x_{3}-x_{4} & =0 \\
2 x_{1}+2 x_{2}+x_{4} & =0 \\
3 x_{1}+x_{2}+2 x_{3}-x_{4} & =0
\end{aligned}
$$

Here, we have $n=4$ variables.

Reduce the augmented matrix to reduced row-echelon form

$$
\left[\begin{array}{rrrr|r}
1 & -1 & 2 & -1 & 0 \\
2 & 2 & 0 & 1 & 0 \\
3 & 1 & 2 & -1 & 0
\end{array}\right]_{R_{3}-3 R_{1}}^{R_{2}-2 R_{1}}\left[\begin{array}{rrrr|r}
1 & -1 & 2 & -1 & 0 \\
0 & 4 & -4 & 3 & 0 \\
0 & 4 & -4 & 2 & 0
\end{array}\right] \rightarrow\left[\begin{array}{rrrr|r}
1 & 0 & 1 & 0 & 0 \\
0 & 1 & -1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

Column 1, 2, 4 have leading 1 s (but not column 3), so x_{3} is assigned as a parameter-say $x_{3}=t$. Then the general solution (start from the bottom row) is

$$
\begin{aligned}
& x_{4}=0 \\
& x_{3}=t \text { (because we said so earlier) }
\end{aligned}
$$

2nd Row : $\quad x_{2}-x_{3}=0$, so $x_{2}=x_{3}=t$,
1st Row: $\quad x_{1}+x_{3}=0$, so $x_{1}=-x_{3}=-t$.
All (infinitely many) solutions are of the form $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=(-t, t, t, 0)$. (Note: here, the aug. matrix has rank $r=3$, and we have $n-r=4-3=1$ parameter, which matches what we said in Slide \#4.)

For example, some solutions are $(0,0,0,0)$, for $t=0$, and ($-1,1,1,0$), for $t=1$.

Suggested Exercises from the textbook (same as for lecture 2a):

Section 1.1, Exercises 7, 9, 11, and 14
Section 1.2, Exercises 3, 7, and 16

