Lecture 18
Linear transformations (revisited)

Definition: A linear transformation (between vector spaces)

Let V and W be vector spaces. A function $T: V \rightarrow W$ is a linear transformation if

- T preserves addition. If v and w are in V, then

$$
T(\mathrm{v}+\mathrm{w})=T(\mathrm{v})+T(\mathrm{w})
$$

- T preserves scalar multiplication. If v is in V and c is in \mathbb{R},

$$
T(c v)=c T(v)
$$

They are also called linear operators, linear maps, or linear functions.
If $f(x)$ and $g(x)$ are smooth functions with

$$
f^{\prime}(x)=\sin (x) \text { and } g^{\prime}(x)=e^{x}
$$

then the linearity of the derivative operator tells us that

$$
\frac{d}{d x}(2 f(x)-4 g(x))=2 \sin (x)-4 e^{x}
$$

Examples of linear transformations

- Many geometric transformations.
- Reflection, rotation, projection, etc.
- Many differential operators; e.g.

$$
H: \mathcal{C}^{\infty} \rightarrow \mathcal{C}^{\infty} \quad H(f):=f^{\prime \prime}+f
$$

- The shift operator on sequences $S: \mathbb{S} \rightarrow \mathbb{S}$ which deletes the first term and shifts everything else over.

$$
S\left(x_{0}, x_{1}, x_{2}, x_{3}, \ldots\right):=\left(x_{1}, x_{2}, x_{3}, x_{4}, \ldots\right)
$$

- Sending a matrix to its transpose defines a linear map

$$
\top: \mathbb{R}^{m \times n} \rightarrow \mathbb{R}^{n \times m}
$$

- Sums, scalar multiples, and compositions of linear transformations are still linear.

The map which sends a 2×2 matrix to its determinant is not a linear transformation. Why?

We can use linear transformations to generalize matrix concepts.

Images and kernels of a linear transformation

Let $T: V \rightarrow W$ be a linear transformation.

- The kernel of T is the subspace of V defined by

$$
\operatorname{ker}(T):=\{v \mid v \text { in } V \text { such that } T(v)=0\}
$$

- The image of T is the subspace of W defined by

$$
\operatorname{im}(T):=\{T(v) \mid v \text { in } V\}
$$

Notice that we've snuck in the fact that $\operatorname{ker}(T)$ and $\operatorname{im}(T)$ are subspaces.

Intuition

- The kernel is the set of inputs sent to the zero element by T.
- The image is the set of actual outputs of T.

Exercise 1(a)

Let $F: \mathbb{P}_{3} \rightarrow \mathbb{P}_{3}$ be the linear transformation defined by $=$

$$
F(p(x)):=(x-2) p^{\prime}(x)
$$

(1) Determine whether $x^{2}-1$ is in the kernel of F.
(2) Determine whether 16 is in the kernel of F.
(3) Determine whether $x^{2}-1$ is in the image of F.
(4) Determine whether $x^{2}-4$ is in the image of F.
(5) Find the dimension of the kernel of F. Write down a basis for the kernel of F.

One of our favorite theorems generalizes.

The Rank-Nullity Theorem (for linear transformations)

If $T: V \rightarrow W$ is a linear transformation, then $\operatorname{dim}(\operatorname{im}(T))+\operatorname{dim}(\operatorname{ker}(T))=\operatorname{dim}(V)$

This can be interpreted with the following intuitive picture.
$\underbrace{(\text { starting } \operatorname{dim})}_{\operatorname{dim}(V)}-\underbrace{(\operatorname{dim} \text { destroyed by } T)}_{\operatorname{dim}(\operatorname{ker}(T))}=\underbrace{(\operatorname{dim} \text { after applying } T)}_{\operatorname{dim}(\operatorname{im}(T))}$

Exercise 1(b)

(1) What is $\operatorname{dim}(\operatorname{im}(F))$ from the previous exercise? Solution: Because $\operatorname{dim}\left(\mathbb{P}_{3}\right)=4$ and we computed $\operatorname{dim}(\operatorname{ker}(F))=1$, we know that

$$
\operatorname{dim}(\operatorname{im}(F))=4-1=3
$$

(2) Write down a basis for $\operatorname{im}(F)$.

Exercise 2

Suppose $T: \mathbb{P}_{4} \rightarrow \mathbb{P}_{6}$ is a linear transformation given by

$$
T(v)=0 \text { for all } v \text { in } \mathbb{P}_{4} .
$$

What is the dimension of the kernel of T ?
Recall that \mathbb{P}_{4} has dimension 5 , and \mathbb{P}_{6} has dimension 7 .

Possible solution A

Since $T(v)=0$ for all v in \mathbb{P}_{4}, we have $\left.\operatorname{im}(T)\right)=\{0\}$. So $\operatorname{dim}(\operatorname{im}(T))=0$. The theorem tells us

$$
\begin{gathered}
\operatorname{dim}(\operatorname{im}(T))+\operatorname{dim}(\operatorname{ker}(T))=\operatorname{dim}(\operatorname{domain} \text { of } T), \\
\text { so } \quad \operatorname{dim}(\operatorname{im}(T))+\operatorname{dim}(\operatorname{ker}(T))=\operatorname{dim}\left(\mathbb{P}_{4}\right) \\
0+\operatorname{dim}(\operatorname{ker}(T))=5
\end{gathered}
$$

Exercise 2

Suppose $T: \mathbb{P}_{4} \rightarrow \mathbb{P}_{6}$ is a linear transformation given by

$$
T(v)=0 \text { for all } v \text { in } \mathbb{P}_{4} .
$$

What is the dimension of the kernel of T ?

Possible solution B

Since $T(v)=0$ for all v in \mathbb{P}_{4}, the kernel of T is the entire \mathbb{P}_{4}. So $\operatorname{ker}(T)=\mathbb{P}_{4}$. So $\operatorname{dim}(\operatorname{ker}(T))=\operatorname{dim}\left(\mathbb{P}_{4}\right)=5$.

