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Lecture 17b

Bases and dimension for vector spaces (part b)
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Review

Definition 1: Bases

A subset of a vector space V is called a basis for V if every element of
V can be written as a linear combination in exactly one way.

Definition 3: Dimension

The dimension of a vector space is the number of elements in any basis.

I dim(Rn) = n

I dim(P) = 1
I dim(Pn) = n + 1

I dim(S) = 1
I dim(Rm⇥n) = mn

I dim(C1) = 1

standardbas.es#
( er , ez, . . . , en}

( 1 , X , XZ, X? . . . . }
{ 1,14×3×3 . . . ,×n}
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Generalize the relations between spanning sets, linearly independent sets, and
bases to finite-dimensional vector spaces.

Relations between spanning, linear independence, and bases

Let V be a finite-dimensional vector space; i.e. dim(V ) < 1.

• Every spanning set for V contains a basis for V .

• Every linearly independent set in V can be extended to a basis for V .

Theorem 1 (Dimension and number of vectors)

Let V be a finite-dimensional vector space; i.e. dim(V ) < 1.

a. Every basis for V contains exactly dim(V )-many elements.

b. Every spanning set for V contains at least dim(V )-many elements, and
equality implies it is a basis.

c. Every linearly independent set in V contains at most dim(V )-many
elements, and equality implies it is a basis.

If the dimension is infinite, equality does not imply a basis!

(direct algorithm)
general

(noalgorithm)
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The ‘2 out of 3 rule’ (from Lecture 13b) still holds.

Theorem 2 (The ‘2 out of 3 Rule’ for vector spaces)

Let V be a finite-dimensional vector space. Let v1, v2, ..., vk be
elements in V . If any 2 of the following 3 are true, then the 3rd is
automatically true.

• {v1, v2, ..., vk} is a spanning set for V .

• {v1, v2, ..., vk} is a linearly independent set.

• The dimension of V is k .

So, if any 2 of these are true, then v1, v2, ..., vk form a basis for V .

If you know dim(V ) and you want to check if a subset T of V is a
basis...

I If T has dim(V )-many vectors, you only need to check one of
the two conditions (and one is usually easier).
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Theorem 3 (Bounds on dimension)

Let W be a subspace of a finite dimensional subspace V .

• 0  dim(W )  dim(V ).

• If dim(W ) = 0, then W = {0}, i.e. W is the zero subspace.

• If dim(W ) = dim(V ), then W = V , i.e. W is all of V .

Exercise 4

Let V be a subspace of P2 with the following properties.

a. x2 � 1 is in V .

b. x2 + 1 is not in V .

c. V contains a non-zero polynomial p(x) such that p(3) = 0.

Find the dimension of V .

c-finite - dimensional vector space )



Since V is a subspace of Pz and dim ( Pz) =3 , the possible dimensions are 0,1 , 2,3.

$ i ① *
• Clue Cb) tells us that there is a

polynomial in 113 which is not in V

Clue Ca) says a non-zero
(the polynomial X't D .

polynomial ( XZ- l) is in V ,
• So V is not the entire

113
.

so V is not the zero subspace .

• Thon 3 (Bounds on dimension)
on

so dim (V) f- O. the previous
slide tells us that

Ciam : pay and N - I are linearly independent . dim * dim ( 1137=3.

Proof of claim : o suppose C , pk) t Cz ( XZ
- l) = O

.

-
an arbitrary linear combination of PK) and

(X'- D. Since { PK) , XZ- I} is

c. pls) t Cz (32-1)=0 linearly independent,

÷:
" "

.
:÷÷::÷: I• So c , p Cx)

= O

• Either Cleo or pcx)=O .

Since dim (V ) 73
,

• Clue (c) says pcx) #O ,
so CFO dima > = 2 .

-

'

.

So
p and XZI are linearly independent - the end -



Slide 6/9

Exercise 5

Let S denote the set of polynomials in P2 such that f (5) = 0.
That is,

S = {f (x) in P2 | f (5) = 0}.

In Lec16b, Exercise 5(a), we showed S is subspace of P2.

a. Find the dimension of S .

b. Find a basis for S .



Recall : dim ( P2) =3 ( since { 1 , X ,×2} is a basis for P2)
.

By the
"

Bounds on dimension
'

; s can have dimension O
, 1,2 , 3 .

O 1 ① 3
S contains Not every polynomial
x - 5 which in Pz is in S

.

Answer to part Ca)
is not the

For example ,
- zero element,

XII is not in S.

So SF 103
.

So S f- Pz .

So dim (5) to.
So dim (s) < dim 2) =3

Note : X- 5 and (x - D2 = X
'
- tox +25 are both in S .

But (x-5) is not a scalar multiple of (X-55 , and

(x-572 is not a scalar multiple of K- 5) .

So { X- 5 , (x-5323 is linearly independent
.

Thin 1 part② says : every linearly independent set in S

contains at most dim (s) - many
elements.

So # S S dim ( s)

Since dimcs) ( 3
,

we have

2 I dim L 3
.

So dim (s) = 2 .



Answer to part (
b)
-

we already computed dim (s) = 2 .

We have a subset { x- 5 , Cx-532} of S which is linearly independent.

So Lets try to use the '2 out of 3 Rule
'

for vector spaces .

Since { X- 5 , €-532} satisfies two out of three properties

• linearly independent( • having the same number of elements as dim Cs)
,

we know { x-5. (x-57} is a spanning set for S .

Since { x-5 , (x-5323 is linearly independent
and is a spanning

set for S,

{ x- 5 , Cx - 532} is a basis for S ( by definition of basis) .
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Back to vectors

Bases allow us to return to the world of vectors!

We can use bases to convert elements in general vector spaces into
vectors, unlocking the many tools from this class.

Definition 4: The coe�cient vector

Let B := {v1, v2, ..., vn} be a basis for a vector space V . Given w in V ,

the coe�cient vector of w in the basis B is

2

6664

c1
c2
...
cn

3

7775

where c1v2 + c2v2 + · · ·+ cnvn = w .

The coe�cient vector records the list of coe�cients of the unique linear
combination equal to w .

E.g. the coe�cient vector of x2 + 5 in the standard basis of P4 is ...

It to.xFtftox4¥x
→ I
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Back to vectors

A simple but useful observation

Fix a basis for an n-dimensional vector space V . Then every
vector in Rn is the coe�cient vector of a unique element in
V .

We can use this to translate problems in V into problems in Rn.
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Back to vectors

Fact 4 (Checking special sets using coe�cient vectors)

Fix a basis for an n-dimensional vector space V .

1 A set of elements in V is a spanning set for V if and only if their
coe�cient vectors is a spanning set for Rn.

2 A set of elements in V is linearly independent in V if and only if their
coe�cient vectors are linearly independent in Rn.

3 A set of elements in V is a basis if and only if their coe�cient vectors
form a basis in Rn.

Exercise 6

Let W be the subspace of C1 spanned by {ex , e�x}.
a Show that {ex , e�x} is a basis for W .

b What is the coe�cient vectors of sinh(x) and cosh(x) in the basis
{ex , e�x}?

c Use the coe�cient vectors above to show that {sinh(x), cosh(x)} is also a
basis for W .

Show that sin h (x) , cosh (x) are in Wo



Show that Sinha)
and cosh CX) are in W

.

• W is defined to be span ( { ex, 5×3) , so

by definition { ex, e-
×] is a spanning set for W

.

• we showed that {ex, e-
×} is linearly independent

in Exercise 2@ecture 17A)
.

• So { ex
,
e-
×] is a basis for W .

Recall Sinh Cx) = ex - e-
×

<

= 'ze×tf⇒e
"

and cosh Cx) = ex t et

z

' Ie
"
+ I e-

×

So Sinh Cx) and cosh Cx) are in W -

• The coefficient vector of Sinh Cx)
is (1,2/2)

.

• The coefficient vector of cosh Cx) is %)
.



Answertopar

we know dimcw) - 2 .
a Since the coefficient

• Since { et, e-
×} is a basis for W,

• Fact 4 Cs) says : If a set of (two) coefficient vectors is a basis in R} vectors of sin h (x) and

then the corresponding elements form
a basis for W

.

Cosh CX) form a basis

• To check that { ¥4
,

is a basis for R2
, for R2

,
we know

we just need to verify that { I ,
)) is linearly independent

(by the
'
2 out of 3

'
rule

,
since we know dim ( IRD - z) : { Sinh (x) , cosh

K)

• Need to show

µ, ( g)
has one unique

solution ( """
o)

. is a
basis for W

(due to dim (W) - 2) .

-

concatenation

Row reduce the augmented matrix :

Every column
left of

the vertical line has

: :!÷÷.fi:1?:!.i.:l:kkilI........Rzt7tzRzin REF

This shows that ④ has one unique
solution

,
the trivial solution

CF CEO
.

• so { LI,]
,

)) is linearly independent, therefore
it's a basis for 1122

(by the
'
2 out of 3

' rule).


