Lecture 17a

Bases and dimension for vector spaces (part a)

Review

Recall: Vector spaces

A vector space is a set V in which

- we know how to add any two elements v, w in V, and
- we know how to multiply any v in V by any scalar r in \mathbb{R} ,

which obey some axioms (the essential properties of arithmetic).

Examples of vector spaces

- For any $n: \mathbb{R}^n$, the set of vectors of height n.
- \mathbb{P} , the set of polynomials in *x*.
- For any n: \mathbb{P}_n , the set of polynomials in x of degree at most n.

Slide 2

- \mathbb{S} , the set of sequences.
- For any *m* and *n*: $\mathbb{R}^{m \times n}$, the set of $m \times n$ -matrices.
- \mathcal{C}^{∞} , the set of smooth functions of *x*.
- Any subspace of a vector space is a vector space.

Recall three definitions involving linear combinations.

Recall: Goldilocks and the three properties

A set of vectors $\{v_1, v_2, ..., v_k\}$ in a subspace V of \mathbb{R}^n is...

- ...a spanning set for V if every element of V can be written as a linear combination in at least one way,
- …a linearly independent set if every element of V can be written as a linear combination in at most one way, and
- ...a basis for V if every element of V can be written as a linear combination in exactly one way.

Slide 3/11

Linear combinations make sense in any vector space!

Definition 1: Goldilocks and the three properties, generalized

- A set of elements $\{v_1, v_2, ..., v_k\}$ in a vector space V is...
 - **a** ...a spanning set for V if every element of V can be written as a linear combination in at least one way,
 - ...a linearly independent set if every element of V can be written as a linear combination in at most one way, and
 - Image: ...a basis for V if every element of V can be written as a linear combination in exactly one way.

Slide 4/11

To check these properties, some of our tools generalize...

Definition 1(b): Checking linear independence

A set of elements $\{v_1, v_2, ..., v_n\}$ in a vector space V is linearly independent if the only linear combination which is equal to the zero element is the trivial linear combination. That is, if

$$c_1v_1+c_2v_2+\cdots+c_nv_n=0$$

then each of $c_1, c_2, ..., c_n$ must be 0.

...but not all our tools generalize.

Don't try to concatenate!

We can no longer turn a linear combination into multiplication by the concatenated matrix.

Slide 5/11

Exercise 1(a)

Exercise 1(b)

 Determine whether {x − 1, x² − 1, x² − x} is linearly independent in the vector space P.

Exercise 1(c)

• Determine whether $\{x^2, (x-1)^2, (x-2)^2\}$ is a basis for the vector space \mathbb{P}_2 .

Exercise 2

Show that $\{e^x, e^{-x}\}$ is linearly independent in the vector space \mathcal{C}^{∞} .

Slide 6/11

Exercise 1(a)

 Determine whether {x, x + 1, x + 2} is a spanning set for the vector space ℙ₁.
• Recall that $II_1 = \{polynomials of degree at most 1\}$ = $\{b_1 X + b_0 \text{ for some } b_1, b_0 \text{ in } \mathbb{R}\}$
• We want to check: Set $b_1 x + b_0 = \begin{array}{c} c_1 x + c_2 (x+i) + c_3 (x+2) \\ \hline a linear combination of S \end{array}$
Can we find at least one solution (for C1, C2, C3) for all 61, 60?
• Rewrite the RttS $b_1 x + b_0 = (l_1 + l_2 + l_3) x + (l_1 l_2 + 2 l_3)$
This is equivalent to $b_1 = c_1 + c_2 + c_3$ $b_0 = c_2 + 2c_3$ $\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_0 \end{bmatrix}$
this is a system of linear equations, with
augmented matrix
[1 1 bi] which is already in REF. 0 1 2 bo]
The right-most column has no lowing is the interval and it is the construction of the
So there exist Ci, Cz, Cz in IR where bixtbo - Cin 1 52 0111
Therefore, $S = \{x, x+1, x+2\}$ is a spanning set for F_1 .

Exercise 1(b)

• Determine whether $\{x - 1, x^2 - 1, x^2 - x\}$ is linearly independent in the vector space \mathbb{P} .

Set
$$C_1(x-1) + C_2(x^2-1) + C_3(x^2-x) = 0$$
.
Check: Are there solutions other than $C_1 = C_2 = C_3 = 0$?
If no, then T is linearly independent.
If yes, then T is not linearly independent
(linearly dependent)

Rewrite $c_1(x-1) + c_2(x^2-1) + c_3(x^2-x) = 0$.

$$\begin{pmatrix} (l_2 + C_3) \times^2 + (C_1 - C_3) \times + (-C_1 - C_2) = 0 = 0 \times^2 + 0 \times + 0 \\ \begin{pmatrix} l_2 + C_3 = 0 \\ C_1 & -C_3 = 0 \\ -C_1 - C_2 & = 0 \end{pmatrix} \Rightarrow \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & -1 \\ -1 & -1 & 0 \end{bmatrix} \begin{bmatrix} C_1 \\ C_2 \\ C_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Not every column left of the vertical line has a leading 1.

$$\begin{pmatrix} l_1 & 0 & -1 & 0 \\ 0 & 1 & 1 & 0 \\ -1 & -1 & 0 & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & -1 & -1 & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & -1 & -1 & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & -1 & -1 & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & -1 & -1 & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & -1 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & -1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & -1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} r_1 & 0 & -1 & 0 \\ 0 & -1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} r_1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} r_1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} r_1 & 0 & -1 & 0 \\ 0 & -1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} r_1 & 0 & -1 & 0 \\ 0 & -1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} r_1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} r_1 & 0 & -1 & 0 \\ 0 & -1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} r_1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} r_1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} r_1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} r_1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} r_1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} r_1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} r_1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} r_1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} r_1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} r_1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} r_1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} r_1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} r_1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} r_1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \\$$

Exercise 1(c)

• Determine whether $\{x^2, (x-1)^2, (x-2)^2\}$ is a basis for the vector space \mathbb{P}_2 .	
Recall $\mathbb{R}_2 = \{ polynomials of degree at most 2 \}$ = $\{ b_2 \chi^2 + b_1 \chi + b_0 \text{ for } b_2, b_1, b_0 \text{ in } \mathbb{R} \}$.	$\begin{bmatrix} 1 & 1 & 1 & b_2 \\ 0 & -2 & -4 & b_1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix}$
Set $b_2 x^2 + b_1 x + b_0 = C_1 x^2 + C_2 (x-1)^2 + C_3 (x-2)^2$	$\begin{bmatrix} 0 & & 4 & & b_0 \end{bmatrix} \begin{bmatrix} 0 & & k_0 & k_0 \end{bmatrix}$
Check whether this has 0,1, or infinitely many solutions. If 0, this means k is not spanning	The realt column
If 1, this means k is spanning and linearly independent (a basis)	so the system
If infinitely many, this means k is spanning but k is not linearly independent.	· Every column to -
$b_{2} X^{2} + b_{1} X + b_{6} = c_{1} X^{2} + c_{2} (X^{2} - 2X + 1) + c_{3} (X^{2} - 4X + 4)$	has a leading 1,
$b_{2} X^{2} + b_{1} X + b_{0} = (c_{1} + c_{2} + c_{3}) X^{2} + (-2c_{2} - 4c_{3}) X + (c_{2} + 4c_{3})$	$\therefore The constion b_{2} X^{2} + b_{1} X + b_{0} =$
$ \begin{array}{c} c_1 + c_2 + c_3 = b_2 \\ -2c_2 - 4c_3 = b_2 \\ \end{array} \right) \implies \begin{bmatrix} 1 & 1 & 1 \\ 0 & -2 & -4 \\ \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ \end{array} = \begin{bmatrix} b_2 \\ b_2 \\ \end{array} \right) $	has one unique
$\begin{array}{c} c_{2} + 4c_{3} = b_{0} \end{array} \left[\begin{array}{c} c_{2} \\ c_{3} \end{array} \right] \left[\begin{array}{c} c_{3} \\ b_{0} \end{array} \right] \left[\begin{array}{c} c_{3} \\ b_{0} \end{array} \right]$	for each bz,
Then write as an augmented matrix:	a linear combi,

- The right column has no leading 1, so the system is consistent • Every column to the left of the vertical line has a leading 1, so there is one unique solution.
- The equation
 b₂ X² + b₁ X + b₀ = (C₁+C₂+C₃)X² + (-2C₂-4C₃)X + (C₂+4C₃)
 has one unique solution (C₁, C₂, C₃)
 has one unique solution (C₁, C₂, C₃)
 for each b₂, b₁, b₀ in R.
 Every element in R₂ can be written as
 a linear combination of K in exactly one way.

. K is a basis for IP2

Exercise 2

Show that $\{e^x, e^{-x}\}$ is linearly independent in the vector space \mathcal{C}^{∞} . Set $C_1 e^{x} + c_2 e^{-x} = 0$. We want to show that the only solution is C1=0, C2=0. Try plugging in values of x to get equations. $\frac{Plug \text{ in } X=0}{C_1 e^0 + C_2 e^{-0}} = 0$ $C_1 + C_2 = 0$ $\frac{Plug \text{ in } X=1}{C_1 e^1 + C_2 e^{-1}} = 0$ $c_1 e^2 + c_2 = 0$ $c_1 e^2 - c_1 = 0$ $C_1(e^2-1) = 0$ 1 know e²≠1, so e²-1 ≠0. $S_0 C_1 = O_1$ Therefore C2=0. We've shown $c_1 e^{x} + c_2 e^{-x} = 0$ implies $c_1 = C_2 = 0$. \therefore {e^x, e^{-x}} is linearly independent. - the end -

Definition 2: Linear combinations of an infinite set

We can't add infinitely many things, so a **linear combination** of an infinite set is defined as a linear combination of any finite subset.

Alternatively, it's a linear combination of the whole set with finitely-many non-zero coefficients.

Exercise 3

Show that the set of powers of x

$$\{1, x, x^2, x^3, x^4, ...\}$$

Slide 7/11

is a basis for \mathbb{P} .

Exercise 3

Show that the set of powers of x

$$B^{:=} \{1, x, x^2, x^3, x^4, ...\}$$

is a basis for \mathbb{P} .

Many of our favorite vector spaces have simple, 'standard' bases.

Standard bases for some vector spaces

• The standard basis vectors $\{e_1, e_2, e_3, \ldots, e_n\}$ form a basis for \mathbb{R}^n . E.g. \mathbb{R}^3 has standard basis $\{c_1, e_2, e_3, \ldots, e_n\}$ • The powers of x form a basis for \mathbb{P} . • The powers of x less or equal to n form a basis for \mathbb{P}_n . E.g. \mathbb{P}_q has standard basis $\{1, x, x^2, x^3, x^4\}$ five elements! • The matrices which are 1 in one entry and 0 elsewhere form a basis for $\mathbb{R}^{m \times n}$. E.g. $\mathbb{R}^{2\times 2}$ has standard basis $\left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \right\}$

Not every vector space has a 'standard' basis.

Slide 8/11

We have a generalization of one of our big theorems.

Theorem (The Invariance Theorem)

Every basis for a vector space have the same number of elements.

Definition 3: Dimension

The **dimension** of a vector space is the number of elements in any basis.

Slide 9/11

Intuitively, the dimension is the smallest amount of numbers you need to describe an arbitrary element in the vector space.

Examples
Examples

$$dim(\mathbb{R}^n) = n.$$

 $dim(\mathbb{R}^n) = n.$
 $dim(\mathbb{R}^n) = n + 1.$ This throws people off!
(remember that $\{1, x, x^2, ..., x^n\}$ has $(n + 1)$ -many elements)
 \mathcal{E}_{2} . For \mathbb{R}_{2} , an arbitrary element looks like $a x^2 + bx + C$.
 $dim(\mathbb{R}^{m \times n}) = mn.$
 \mathcal{E}_{2} . For $\mathbb{R}_{2}^{2\times 3}$ an arbitrary element looks like $\begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix}$.

Slide 10/11

Infinite dimensional vector spaces

The dimension of a vector space can be infinite!

If there is no finite basis for V, we say that $\dim(V) = \infty$.

Examples

• $\mathsf{dim}(\mathbb{P})=\infty,$ because the standard basis is infinite:

$$\{1, x, x^2, x^3, ...\}$$

• dim(
$$\mathbb{S}$$
) = ∞ .

• dim
$$(\mathcal{C}^{\infty}) = \infty$$
.

Intuitively, this says there is no way to describe every polynomial, sequence, or smooth function using n-many numbers, for fixed n.

Slide 11/11