Bases and dimension for vector spaces (part a)




Review

Recall: Vector spaces

A vector space is a set V in which
® we know how to add any two elements v, w in V, and
® we know how to multiply any v in V' by any scalar r in R,

which obey some axioms (the essential properties of arithmetic).

Examples of vector spaces

® For any n: R", the set of vectors of height n.

® P, the set of polynomials in x.

® For any n: P, the set of polynomials in x of degree at most n.
® S, the set of sequences.

® For any m and n: R™*", the set of m X n-matrices.

® (C°° the set of smooth functions of x.

® Any subspace of a vector space is a vector space.




Review

Recall three definitions involving linear combinations.

Recall: Goldilocks and the three properties

A set of vectors {vi, va, ..., vk } in a subspace V of R" is...

@ ...a spanning set for V if every element of V' can be written
as a linear combination in at least one way,

@® ...a linearly independent set if every element of V can be
written as a linear combination in at most one way, and

© ...a basis for V if every element of V can be written as a
linear combination in exactly one way.




Linear combinations make sense in any vector space!

Definition 1: Goldilocks and the three properties, generalized

A set of elements {v1, va, ..., vk} in a vector space V is...

® ...a spanning set for V if every element of V' can be written
as a linear combination in at least one way,

® ...a linearly independent set if every element of V can be
written as a linear combination in at most one way, and

® ...a basis for V if every element of V can be written as a
linear combination in exactly one way.




To check these properties, some of our tools generalize...

Definition 1(b): Checking linear independence

A set of elements {v1, va, ..., v} in a vector space V is linearly
independent if the only linear combination which is equal to the
zero element is the trivial linear combination. That is, if

avit+ov+---+cv, =0

then each of ¢, ¢, ..., ¢, must be 0.

...but not all our tools generalize.

Don't try to concatenate!

We can no longer turn a linear combination into multiplication by
the concatenated matrix.




Exercise 1(a)

® Determine whether {x,x + 1, x + 2} is a spanning set for the vector
space P;.

Exercise 1(b)

® Determine whether {x — 1,x%> — 1,x? — x} is linearly independent in
the vector space P.

® Determine whether {x?, (x — 1)2, (x — 2)?} is a basis for the vector
space Ps.

Show that {e*, e *} is linearly independent in the vector space C*. \




Exercise 1(a)

® Determine whether {x,x + 1,x + 2} is a spanning set for the vector
space P;. G¢#
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Exercise 1(b)

® Determine whether {x —1,x*> —1,x* — x} is linearly independent in
the vector space P. ~ -7
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Exercise 1(c)

® Determine whether {x2, (x — 1)2,(x — 2)?} is a basis for the vector

space P,. k=
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Exercise 2
Show that {e*, e >} is linearly independent in the vector space C™°.
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Definition 2: Linear combinations of an infinite set
We can't add infinitely many things, so a linear combination of an
infinite set is defined as a linear combination of any finite subset.

Alternatively, its a linear combination of the whole set with
finitely-many non-zero coefficients.

Show that the set of powers of x

{1,x,x2,x3,x%, ..}

is a basis for P.




‘ Exercise 3

Show that the set of powers of x
B:= {1,x,x%,x3,x% ...}

is a basis for P.
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Many of our favorite vector spaces have simple, ‘standard’ bases.

Standard bases for some vector spaces

® The standard basis vectors {e1, e, €3, ..., e,} form a basis for
R". €. [K bty stundard basTs {:[] (2 L’l €y [b]}

® The powers of x form a basis for PP.
kw_’
T o k% Y

® The powers of x less or equal to n form a basis for P
€. P, has Stardard basis i 1,x,x’—,x3,><‘q

-E‘nu. eleman s‘.

® The matrices which are 1 in one entry and 0 elsewhere form a
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Not every vector space has a ‘standard’ basis.



We have a generalization of one of our big theorems.

Theorem (The Invariance Theorem)

Every basis for a vector space have the same number of elements.

Definition 3: Dimension

The dimension of a vector space is the number of elements in any
basis.




Intuitively, the dimension is the smallest amount of numbers you
need to describe an arbitrary element in the vector space.
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Infinite dimensional vector spaces

The dimension of a vector space can be infinite!

If there is no finite basis for V, we say that dim(V) = oc.

Examples

¢ dim(IP) = oo, because the standard basis is infinite:
{1,x,x2,x3,...}
e dim(S) = .

¢ dim(C*>) = oc.

Intuitively, this says there is no way to describe every polynomial,
sequence, or smooth function using n-many numbers, for fixed n.



