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Lecture 16a

Vector Spaces

We can extend the concepts we’ve learned far beyond vectors.

)
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Crucial observation #1

Most big concepts in this class can be defined in terms of addition
and scalar multiplication of vectors.
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A linear transformation TM
preserves which is closed under :

A subspace
is a non - empty subset

I . addition

z .
scalar multiplication ! asdcadiationmultipli cation

Every element of

the subspace
V

can be written
V

as a linear

combination of s

Def Given a matrix M , the
in exactly one-way

linear transformation M ,

-
of

denoted by TM ,

is defined by

TM (v) = MV (scalar mutt plication)

S

M is invertible

}
dimension of a subspace

iff is the number of

det (M) # O { elements in any
basis

Having an eigenbasis

speeds up matrix

multiplication

bases for IR
"

consisting

of eigenvectors
of a matrix

( doesn't always exist)
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Crucial observation #2

Addition and scalar multiplication make sense for many other
mathematical objects.

Examples

• Polynomials.

(1 + x2) + (7� 3x + x3) 4(1 + 3x + 4x2)

• Real-valued functions of x

sin(x) + ex 4 ln(x)

Goals

Generalize what we’ve learned so far about vectors to other kinds
of objects we can add and scalar multiply.

polynomial addition scalar multiplication
- -

4 is a scalar/ number

function addition

-

Scalar multiplication
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Vector space

Definition 1: A vector space

A vector space is a set V in which

• there is a rule to add any two elements v ,w in V , and

• there is a rule to multiply any v in V by any scalar r in R,
such that the axioms on the next slide hold.

Intuitively, a vector space is a set of mathematical objects which
collectively behave like a set of vectors.

Possibly confusing terminology

Elements of a vector space may not be vectors (as in, columns of
numbers in brackets). To make this worse, some references (like
our textbook) use ‘vector’ to refer to any element of a vector
space. - I will not do this .
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Axioms for vector space

Axioms (essential properties) of addition

• u + v = v + u for all u, v in V .

• (u + v) + w = u + (v + w) for all u, v ,w in V .

• There is an element 0 in V , such that for all v in V ,

v + 0 = 0 + v = v

• For each v in V , there exists �v in V with

v + (�v) = (�v) + v = 0

Axioms (essential properties) of scalar multiplication

• r(u + v) = ru + rv for all u, v in V and any r in R.
• (r + s)v = rv + sv for all v in V and any r , s in R.
• r(sv) = (rs)v for all v in V and any r , s in R.
• There is an element 1 such that 1v = v for all v in V .

An axiom is a fact that can’t be reduced to a simpler property.

-

(addition is commutative)

(addition is associative)

(additive identity ,
called

"
O

'

;
exists)

(additive inverse ,
denoted by

"

-

"

,

exists )

}
distributivity

(multiplication is associative)
(multiplicative identity,called 1

, exists
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The set of vectors of height n is a vector space!

The trivial examples are the objects we are trying to generalize.

Fact 1 (The motivating examples of vector spaces)

For each positive integer n, the set Rn is a vector space.

We will go through previous definitions and theorems, cross out
Rn, and write ‘vector space’.

*
Vector space
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Fact 2 (Our first non-vector vector space)

The set of polynomials in x is a vector space, denoted P.

Useful fact

Two polynomials are equal if and only if they have the coe�cients when

written in standard form: anx
n
+ an�1x

n�1
+ · · ·+ a1x + a0.

Exercise 1(a)

• Find a polynomial p such that (1 + x) plus p is x2
+ 3x + 1.

Exercise 1(b)

• Determine whether (x � 4)
3
is a scalar multiple of x2

+ x + 1.

Exercise 1(c)

• Write x2
as a linear combination of 1, 1 + x , and 1 + 2x + x2

.

Numbers like 0, 1, and 7 count as constant polynomials!

0



( tx) t p = x' + 3×+1 Is there ascalarR such that

a number c

p
= x
-

t 3×+1 - l l + × )

(× - 433 = c (x' -1×+7) ?
p = XZ t 2X



(It x) t p = x't 3×+1 Is there a scalar c in IR such that
-

a number c

p
= It 3×+1 - l l + × )

(× - 433 = c (a txt 1) ?
p = XZ + 2X

First
, put the LHS in standard form :

(x-4) (X
'

-8×+16) = c (x't Xt D

X
'
- 12×2+(32+16) X -164 = c (X't Xt 1)

Since x'txt l has no X3 term
,

this is impossible .

i
. (x- 473 is not a scalar multiple of x'txtl.

Equivalently ,
1×-433 is not in the span of#txtD , since

(X-473 is not a linear combination of x'txt- I .



We want to find a , b , c in IR such that Note : This is a polynomial in one

XZ = a. I t b ( ( tx) t c (1+2×-1×2) ← Variable
,
x

.

-

The letters a. b, c are

Put the RHS into standard form ,
so that

just numbers we're trying
it's easy to compare the two sides

- fo find .

Think of l -- Xo

x
'

=

-
X
'

t
-

X t
- If

We collect all terms with XZ
,
all terms with X

,
and all constant terms

.

x' = 1×2 + (E) x +Cattle

The only way the LHS equals RHS is if all coefficients match
.

1. ×2t o X t O . I = C XZ + ( b -12C) x t (at btc) .
1

This tells us 1 = C

O = btzc } BII ! -- o ⇒ b -12--0=7 be-2

O -_ atbt c atbtc -0 ⇒ at +1=0 ⇒ a -1=0 ⇒ 9=1

( a system of linear equations !)
sanity check :

i
.
X
'
= 1. (1) + C-2) ( It + (1) (1-12×-1×2) I - 2Gt X) -11+2×-1×2 -1×2✓
in en w
a b C
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Definition 2: The degree of a polynomial

The degree of a non-zero polynomial in x is the largest power of x
with non-zero coe�cient.

We define deg(0) := �1, mostly to avoid an annoying extra case.

Fact 3 (Polynomials of degree at most n)

For each positive integer n, the set of polynomials in x of degree at
most n is a vector space, denoted Pn.

Example

• P1 consists of polynomials ax + b, for a, b in R.
• The three polynomials (x � 1)3, x2 + 3x , and 2 are in P3,

but the polynomials x4 and x8 � 2x3 are not.

• P0 is just the constant polynomials like 0, 1, and 7, which are
the same as numbers, so P0 = R.

0
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By a sequence, we mean an infinite list of real numbers.

Examples of sequences

0, 1, 1, 2, 3, 5, 8, 13, 21, ... (the Fibonacci sequence)

1, 3, 5, 7, 9, 11, 13, 15, .... (odd numbers)

2, 3, 5, 9, 11, 13, 17, ... (prime numbers)

1, 3, 9, 27, 81, 243, ... (powers of 3)

7, 12,�5,⇡, 3.5, 7, ... (Just some random numbers)

Unlike sets, order matters!

Fact 4 (The set of sequences is a vector space)

The set of sequences is a vector space, denote S. Addition and
scalar multiplication are defined term-wise.
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Fact 5 (Sets of matrices of fixed size are vector spaces)

For positive integers m and n, the set of m⇥ n-matrices is a vector
space, denoted Rm⇥n.

Addition and scalar multiplication are the matrix versions.
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Definition 3: Smooth functions

A real-valued function is smooth if all higher derivatives exist.

Examples of smooth functions

sin(x) cos(x) ex

polynomials

sums, multiples, and products of smooth functions

Fact 6 (The set of smooth functions is a vector space)

The set of smooth functions of x is a vector space, denoted C1.

This is a huge set that contains most functions you can imagine.(
(Ex : Allows us to use linear algebra to study differential equations)


