Lecture 16a

Vector Spaces

We can extend the concepts we've learned far beyond vectors. J




Crucial observation #1

Most big concepts in this class can be defined in terms of addition
and scalar multiplication of vectors.
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Crucial observation #2

Addition and scalar multiplication make sense for many other
mathematical objects.

® Polynomials.  q.iyromial eddition tealar multiplication
/M\ /\M
(14 x?) 4+ (7 = 3x + x3) 4(1 + 3x + 4x?)
® Real-valued functions of x SERENE BRI N =y
H£unction  eddition
H X
sin e 41n
in(x) + \ﬁ&

Sealar malfiplication

Goals

Generalize what we've learned so far about vectors to other kinds
of objects we can add and scalar multiply.




Vector space

Definition 1: A vector space
A vector space is a set V' in which
® there is a rule to add any two elements v, w in V, and
® there is a rule to multiply any v in V by any scalar r in R,

such that the axioms on the next slide hold.

Intuitively, a vector space is a set of mathematical objects which
collectively behave like a set of vectors.

Possibly confusing terminology

Elements of a vector space may not be vectors (as in, columns of
numbers in brackets). To make this worse, some references (like
our textbook) use ‘vector’ to refer to any element of a vector
space. — [ will not do s,




Axioms for vector space

Axioms (essential properties) of addition

H Hion T ekt
® y+v=v+uforall u,vinV. (osdix 5 &= =
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® (utv)+w=u+(v+w)forall uyv,win V. (eaition o= K

® There is an element 0 in V/, such that for all v in V/, (eddsrve idetii,
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v+0=0+v=v D)

(additive Tnverse,

® For each v in V, there exists —v in V with Nerored vq =
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Axioms (essential properties) of scalar multiplication

® r(u+v)=ru+rvforall u,vinVandanyrinR. | & butTVIty
® (r+s)v=rv+svforall vinV and any r,s in R.
® r(sv)=(rs)vforall vin V and any r,sin R.  (multiplicakion s assocahive)

2 . (MMH-"?\TLWH\/& i denbid
® There is an element 1 such that 1v = v for all vin V.* cated ", esacts

An axiom is a fact that can't be reduced to a simpler property.




The set of vectors of height n is a vector space!

The trivial examples are the objects we are trying to generalize.

Fact 1 (The motivating examples of vector spaces)

For each positive integer n, the set R” is a vector space.

We will go through previous definitions and theorems, cross out
R”, and write ‘vector space’.

X
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Fact 2 (Our first non-vector vector space)

Two polynomials are equal if and only if they have the coefficients when
written in standard form: a,x" + a,—1x""! + - 4+ a;x + ao.

Exercise 1(a)

® Find a polynomial p such that (1 + x) plus p is x*> 4+ 3x + 1.

Exercise 1(b)

® Determine whether (x — 4)% is a scalar multiple of x> + x + 1.

® Write x? as a linear combination of 1, 1 + x, and 1 + 2x + x2.

Numbers like 0, 1, and 7 count as constant polynomials! J




‘ Exercise 1(a) Exercise 1(b)
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Exercise 1(c)

® \Write x* as a linear combination of 1, 1 + x, and 1 + 2x + x°.
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Definition 2: The degree of a polynomial

The degree of a non-zero polynomial in x is the largest power of x
with non-zero coefficient.

We define deg(0) := —oo, mostly to avoid an annoying extra case.

Fact 3 (Polynomials of degree at most n)

For each positive integer n, the set of polynomials in x of degree at
most n is a vector space, denote IP’,,.B

|*3

Example
® P; consists of polynomials ax + b, for a, b in R.
® The three polynomials (x — 1)3, x2+3x,and 2 areinPs,
but the polynomials x* and x® — 2x3 are not.

® Py is just the constant polynomials like 0, 1, and 7, which are
the same as numbers, so Py = R.




By a sequence, we mean an infinite list of real numbers.

Examples of sequences

0,1,1,2,3,5,8,13,21, ... (the Fibonacci sequence)
1,3,5,7,9,11,13,15, .... (odd numbers)
2,3,5,9,11,13,17, ... (prime numbers)
1,3,9,27,81,243, ... (powers of 3)
7,12, —-5,m,3.5,7, ... (Just some random numbers)

Unlike sets, order matters!

Fact 4 (The set of sequences is a vector space)

The set of sequences is a vector space, denote S. Addition and
scalar multiplication are defined term-wise.




Fact 5 (Sets of matrices of fixed size are vector spaces)

For positive integers m and n, the set of m X n-matrices is a vector
space, denoted R™*",

Addition and scalar multiplication are the matrix versions.



Definition 3: Smooth functions

A real-valued function is smooth if all higher derivatives exist.

Examples of smooth functions

sin(x) cos(x) e*

polynomials

sums, multiples, and products of smooth functions

Fact 6 (The set of smooth functions is a vector space)

The set of smooth functions of x is a vector space, denoted C°.

This is a huge set that contains most functions you can imagine.
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