Lecture 16a

Vector Spaces

We can extend the concepts we've learned far beyond vectors.

Crucial observation \#1

Most big concepts in this class can be defined in terms of addition and scalar multiplication of vectors.

Crucial observation \#1

Most big concepts in this class can be defined in terms of addition and scalar multiplication of vectors.

Crucial observation \#2

Addition and scalar multiplication make sense for many other mathematical objects.

Examples

- Polynomials. polynomial addition
scalar multiplication

$$
\left(1+x^{2}\right)+\left(7-3 x+x^{3}\right) \quad \overbrace{4\left(1+3 x+4 x^{2}\right)}
$$

- Real-valued functions of x

$$
\sin (x)+e^{x} \quad 4 \ln (x)
$$

Goals

Generalize what we've learned so far about vectors to other kinds of objects we can add and scalar multiply.

Vector space

Definition 1: A vector space

A vector space is a set V in which

- there is a rule to add any two elements v, w in V, and
- there is a rule to multiply any v in V by any scalar r in \mathbb{R}, such that the axioms on the next slide hold.

Intuitively, a vector space is a set of mathematical objects which collectively behave like a set of vectors.

Possibly confusing terminology

Elements of a vector space may not be vectors (as in, columns of numbers in brackets). To make this worse, some references (like our textbook) use 'vector' to refer to any element of a vector space. - 1 will not do this.

Axioms for vector space

Axioms (essential properties) of addition

- $u+v=v+u$ for all u, v in V.
- $(u+v)+w=u+(v+w)$ for all u, v, w in V. (addition is associative)
- There is an element 0 in V, such that for all v in V, (additive identity,

$$
v+0=0+v=v \quad l l
$$

- For each v in V, there exists $-v$ in V with

$$
v+(-v)=(-v)+v=0
$$

Axioms (essential properties) of scalar multiplication

- $r(u+v)=r u+r v$ for all u, v in V and any r in \mathbb{R}. \} distributivity
- $(r+s) v=r v+s v$ for all v in V and any r, s in \mathbb{R}.
- $r(s v)=(r s) v$ for all v in V and any r, s in \mathbb{R}. (multiplication is associative)

An axiom is a fact that can't be reduced to a simpler property.

The set of vectors of height n is a vector space!

The trivial examples are the objects we are trying to generalize.
Fact 1 (The motivating examples of vector spaces)
For each positive integer n, the set \mathbb{R}^{n} is a vector space.

We will go through previous definitions and theorems, cross out \mathbb{R}^{n}, and write 'vector space'.

Vector space

Fact 2 (Our first non-vector vector space)

The set of polynomials in x is a vector space, denoted \mathbb{P}.

Useful fact

Two polynomials are equal if and only if they have the coefficients when written in standard form: $a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$.

Exercise 1(a)

- Find a polynomial p such that $(1+x)$ plus p is $x^{2}+3 x+1$.

Exercise 1(b)

- Determine whether $(x-4)^{3}$ is a scalar multiple of $x^{2}+x+1$.

Exercise 1(c)

- Write x^{2} as a linear combination of $1,1+x$, and $1+2 x+x^{2}$.

Numbers like 0,1 , and 7 count as constant polynomials!

Exercise 1(a)

- Find a polynomial p such that $(1+x)$ plus p is $x^{2}+3 x+1$.

$$
\begin{aligned}
(1+x)+p & =x^{2}+3 x+1 \\
p & =x^{2}+3 x+1-(1+x) \\
p & =x^{2}+2 x
\end{aligned}
$$

Exercise 1(b)

- Determine whether $(x-4)^{3}$ is a scalar multiple of $x^{2}+x+1$.

Is there a $\underbrace{\text { scalar } c \text { in } \mathbb{R}}_{\text {a number } c}$ such that

$$
(x-4)^{3}=c\left(x^{2}+x+1\right) ?
$$

Exercise 1(a)

- Find a polynomial p such that $(1+x)$ plus p is $x^{2}+3 x+1$.

$$
\begin{aligned}
(1+x)+p & =x^{2}+3 x+1 \\
p & =x^{2}+3 x+1-(1+x) \\
p & =x^{2}+2 x
\end{aligned}
$$

Exercise 1(b)

- Determine whether $(x-4)^{3}$ is a scalar multiple of $x^{2}+x+1$.

Is there a $\underbrace{\text { scalar } c \text { umber } c}_{a}$ in \mathbb{R} such that

$$
(x-4)^{3}=c\left(x^{2}+x+1\right) ?
$$

First, put the LHS in standard form:

$$
\begin{aligned}
& (x-4)\left(x^{2}-8 x+16\right)=c\left(x^{2}+x+1\right) \\
& x^{3}-12 x^{2}+(32+16) x+64=c\left(x^{2}+x+1\right)
\end{aligned}
$$

Since $x^{2}+x+1$ has no x^{3} term, this is impossible.
$\therefore(x-4)^{3}$ is not a scalar multiple of $x^{2}+x+1$.
Equivalently,
$(x-4)^{3}$ is not in the span of $\left\{x^{2}+x+1\right\}$, since $(x-4)^{3}$ is not a linear combination of $x^{2}+x+1$.

Exercise 1(c)

- Write x^{2} as a linear combination of $1,1+x$, and $1+2 x+x^{2}$.

We want to find a, b, c in \mathbb{R} such that
Note: This is a polynomial in one

$$
x^{2}=a \cdot 1+b(1+x)+c\left(1+2 x+x^{2}\right)
$$

variable, x.
The letters a, b, c are just numbers were trying to find.

$$
x^{2}=x^{2}+\underbrace{\underbrace{\text { Think of }}_{\sigma} 1=x^{0}}
$$

We collect all terms with x^{2}, all terms with x, and all constant terms.

$$
x^{2}=x^{c}+\underbrace{(b+2 c)} x+(a+b+c) 1
$$

The only way the LHS equals RHS is if all coefficients match.

$$
1 . x^{2}+0 x+0.1=c x^{2}+(b+2 c) x+(a+b+c) .1
$$

This tells us $1=c \quad c=1$

$$
\left.\begin{array}{cc}
1= & c \\
0= & b+2 c \\
0=a+b+c \\
\text { inear equation ! }
\end{array}\right\} \quad \begin{aligned}
& c=1 \\
& b+2 c=0 \Rightarrow b+2=0 \Rightarrow b=-2 \\
& a+b+c=0 \Rightarrow a+(-2)+1=0 \Rightarrow a-1=0 \Rightarrow a=1
\end{aligned}
$$

(a system of linear equation e!)

$$
\therefore x^{2}=\underbrace{1}_{a}(1)+\underbrace{(-2)}_{b}(1+x)+\underbrace{(1)}_{c}\left(1+2 x+x^{2}\right) \quad \text { sanity check: } 1-2(1+x)
$$

Definition 2: The degree of a polynomial

The degree of a non-zero polynomial in x is the largest power of x with non-zero coefficient.

We define $\operatorname{deg}(0):=-\infty$, mostly to avoid an annoying extra case.

Fact 3 (Polynomials of degree at most n)

For each positive integer n, the set of polynomials in x of degree at most n is a vector space, denoted \mathbb{P}_{n}.

Example

- \mathbb{P}_{1} consists of polynomials $a x+b$, for a, b in \mathbb{R}.
- The three polynomials $(x-1)^{3}, \quad x^{2}+3 x$, and 2 are in \mathbb{P}_{3}, but the polynomials x^{4} and $x^{8}-2 x^{3}$ are not.
- \mathbb{P}_{0} is just the constant polynomials like 0,1 , and 7 , which are the same as numbers, so $\mathbb{P}_{0}=\mathbb{R}$.

By a sequence, we mean an infinite list of real numbers.

Examples of sequences

$$
\begin{aligned}
& 0,1,1,2,3,5,8,13,21, \ldots \\
& 1,3,5,7,9,11,13,15, \ldots \\
& 2,3,5,9,11,13,17, \ldots \\
& 1,3,9,27,81,243, \ldots \\
& 7,12,-5, \pi, 3.5,7, \ldots
\end{aligned}
$$

(the Fibonacci sequence)
(odd numbers)
(prime numbers)
(powers of 3)
(Just some random numbers)

Unlike sets, order matters!
Fact 4 (The set of sequences is a vector space)
The set of sequences is a vector space, denote \mathbb{S}. Addition and scalar multiplication are defined term-wise.

Fact 5 (Sets of matrices of fixed size are vector spaces)

For positive integers m and n, the set of $m \times n$-matrices is a vector space, denoted $\mathbb{R}^{m \times n}$.

Addition and scalar multiplication are the matrix versions.

Definition 3: Smooth functions

A real-valued function is smooth if all higher derivatives exist.

Examples of smooth functions

$$
\begin{gathered}
\sin (x) \cos (x) e^{x} \\
\text { polynomials }
\end{gathered}
$$

sums, multiples, and products of smooth functions
Fact 6 (The set of smooth functions is a vector space)
The set of smooth functions of x is a vector space, denoted \mathcal{C}^{∞}.
This is a huge set that contains most functions you can imagine.
(Ex: Allows us to use linear algebra to study differential equations)

