Lecture 15c
Eigenbases (Diagonalization)

Review Lecture 15b

Algorithm 2 (How to find an eigenbasis)

We are given an $n \times n$ matrix A.
Find the eigenvalues of A (by factoring the characteristic polynomial.)
(2). For each eigenvalue, find a basis of the λ-eigenspace.

- That is, a basis for $\operatorname{ker}(\mathrm{A}-\lambda \mathrm{Id})$
(3). Put all the vectors together into a set.
- If there are n-many vectors, the set is an eigenbasis!
- If there are fewer than n-many vectors, no eigenbasis exists!

Determining when a matrix has an eigenbasis without finding one

- Fact 3: A matrix A has an eigenbasis iff $\operatorname{width}(A)=\sum_{\lambda} \operatorname{dim}\left(E_{\lambda}(A)\right)$
- Theorem 4: If an $n \times n$ matrix has n-many (distinct) eigenvalues, then it has an eigenbasis.
(If the matrix has fewer than n eigenvalues, we have to do more work.)

The idea that eigenbases 'simplify multiplication' can be encoded into a special factorization of A, called a diagonalization of A.

Let's start with a computation!
Suppose $S:=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is an eigenbasis for an $n \times n$ matrix A. By def, S is a basis for \mathbb{R}^{n}.
Let $P:=\left[\begin{array}{cccc}\left.\left\lvert\, \begin{array}{llll}v_{1} & v_{2} & \ldots & v_{n} \\ \mid & \mid & & \end{array}\right.\right] \text {, concatenation of } S \text {. Then } P \text { is invertible (since } S \text { is a basis for } \mathbb{R}^{n} \text {). } \text {. } \text {. } 10\end{array}\right.$
Then $A P=\left[\begin{array}{cccc}A & \mid & & 1 \\ A v_{1} & A v_{2} & \ldots & A^{\prime} v_{n} \\ \mid & \mid & & 1\end{array}\right]$
This is true in general.

$$
=\left[\begin{array}{cccc}
\mid & \mid & & \mid \\
\lambda_{1} v_{1} & \lambda_{2} v_{2} & \ldots & \lambda_{n} v_{n} \\
\mid & \mid & & \mid
\end{array}\right]
$$

where λ_{1} is the eigenvalue for v_{1},
λ_{2} is the eigenvalue for v_{2},
$\left[\begin{array}{c}\text { Note: } \\ \lambda_{1}, \lambda_{2}, \ldots, \lambda_{n} \text { dort have } \\ \\ \text { to be distinct }\end{array}\right]$
λ_{n} is the eigenvalue for v_{n}.

$$
\begin{aligned}
& \text { all this diagonal } \\
& \text { matrix } D
\end{aligned}
$$

So $A P=P D$, so $A=P D P^{-1}$.

From above, we have $A P=P D$. Since P is invertible, we can rewrite $A P=P D$ as $\ldots \quad A=P D P^{-1}$

Theorem 5 (Diagonalizing a matrix with an eigenbasis)

Let $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{n}$ be an eigenbasis for A , and let λ_{i} denote the eigenvalue of v_{i}. Then we can factor A as

$$
\mathrm{A}=\mathrm{PDP}^{-1}
$$

where

- P is the concatenation of the eigenbasis.
- D is the diagonal matrix with the eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ on the diagonal.

Such a factorization is called a diagonalization of A.
Thus, a matrix with an eigenbasis is called diagonalizable.

Example:

$$
\underbrace{\left[\begin{array}{ll}
2 & 1 \\
2 & 3
\end{array}\right]}_{A}=\underbrace{\left[\begin{array}{cc}
-1 & 1 \\
1 & 2
\end{array}\right]}_{P} \underbrace{\left[\begin{array}{ll}
1 & 0 \\
0 & 4
\end{array}\right]}_{D} \underbrace{\left[\begin{array}{cc}
-2 & \frac{1}{3} \\
\frac{1}{3} & \frac{1}{3}
\end{array}\right]}_{P^{-1}}
$$

$$
\underbrace{\left[\begin{array}{ccc}
3 & -1 & 2 \\
0 & 2 & -2 \\
0 & 0 & 1
\end{array}\right]}_{A}=\underbrace{\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{array}\right]}_{P} \underbrace{\left[\begin{array}{lll}
3 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right]}_{D} \underbrace{\left[\begin{array}{ccc}
1 & -1 & 2 \\
0 & 1 & -2 \\
0 & 0 & 1
\end{array}\right]}_{P-1}
$$

Both P and D depend on an ordering of the eigenvalues and the eigenvectors, and both have to be in the same order.

Exercise 8

Diagonalize the following matrix; that is, write it as PDP^{-1} for some diagonal matrix D .

$$
\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right]
$$

Exercise 8 solution (pg $1 / 2$)
Diagonalize the following matrix; that is, write it as PDP^{-1} for some diagonal matrix D .

$$
A:=\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right]
$$

First, use Algorithm 2 to find an eigenbasis for A.
Step (1): Find eigenvalues of A

- Characteristic polynomial of A is

$$
\begin{aligned}
P_{A}(x) & =\operatorname{det}(x \mid d-A) \\
& =\operatorname{det}\left(\left[\begin{array}{ll}
x-2 & -1 \\
-1 & x-2
\end{array}\right]\right) \\
& =(x-2)(x-2)-1 \\
& =x^{2}-4 x+4-1 \\
& =x^{2}-4 x+3 \\
& =(x-1)(x-3)
\end{aligned}
$$

- Roots of $P_{A}(x)$ are $\lambda_{1}=1, \lambda_{2}=3$.

So the eigenvalues of A are $\lambda_{1}=1, \lambda_{2}=3$.

Step (2): Find a basis for each eigenspace of A

- Find a basis for the 1-eigenspace of A,

$$
E_{1}(A)=\operatorname{ker}(A-1 \mid d)
$$

(G) 2 has no leading 1)

$$
\left[\begin{array}{cc|c}
2-1 & 1 & 0 \\
1 & 2-1 & 0
\end{array}\right]=\left[\begin{array}{ll|l}
1 & 1 & 0 \\
1 & 1 & 0
\end{array}\right] \rightarrow\left[\begin{array}{ll|l}
1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Let $y \stackrel{\downarrow}{=} t$

$$
x+y=0 \Rightarrow x=-t
$$

$$
R_{2} \mapsto-R_{1}+R_{2}
$$

General solution: $\left[\begin{array}{c}-t \\ t\end{array}\right]=t\left[\begin{array}{c}-1 \\ 1\end{array}\right]$
A basis for $E_{1}(A)$ is $\left\{\left[\begin{array}{c}-1 \\ 1\end{array}\right]\right\}$.

- Find a basis for the 3-eigenspace of A,

General solution: $\left[\begin{array}{l}t \\ t\end{array}\right]=t\left[\begin{array}{l}1 \\ 1\end{array}\right]$
Abasis for $E_{3}(A)$ is $\left\{\left[\begin{array}{l}1 \\ 1\end{array}\right]\right\}$.
Step (3): Put all basis vectors together
$\left\{\left[\begin{array}{r}-1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 1\end{array}\right]\right\}$ has $n=2$ vectors (not fewer than two),
so it is an eigenbasis for A.

$$
\begin{aligned}
& E_{3}(A)=\operatorname{ker}(A-3 \mid d) \\
& \text { Col } 2 \text { has no } \\
& \text { leading 1) }
\end{aligned}
$$

Exercise 8 (solution $\mathrm{pg} 2 / 2$)
Diagonalize the following matrix; that is, write it as PDP^{-1} for some diagonal matrix D .

$$
A:=\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right]
$$

From the previous page, we found an eigenbasis $\left\{\left[\begin{array}{r}-1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]\right\}$ of A with corresponding eigenvalues $\quad \lambda_{1}=1 \quad \lambda_{2}=3$

To diagonalize A, we need $P, \underset{\text { diagonal matrix }}{D}, P^{-1}$ where $A=P D P^{-1}$

$$
P=\begin{gathered}
\text { Concatenation } \\
\text { of the vectors } \\
\text { in the eigenbasis }
\end{gathered}=\left[\begin{array}{cc}
-1 & 1 \\
1 & 1
\end{array}\right]
$$

$$
\begin{array}{r}
P^{-1}=\frac{1}{\operatorname{det}(P)}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right] \\
\left(\text { if } P=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)
\end{array}
$$

$$
\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right]=\left[\begin{array}{rr}
-1 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 3
\end{array}\right]\left[\begin{array}{rr}
-1 / 2 & 1 / 2 \\
1 / 2 & 1 / 2
\end{array}\right]
$$

diagonal matrix

$$
\begin{aligned}
D= & \begin{array}{l}
\text { on the diagonal } \\
\text { on eigenvalues } \\
\\
\text { in the same order }
\end{array}=\left[\begin{array}{ll}
1 & 0 \\
0 & 3
\end{array}\right]
\end{aligned}
$$ as the concatenation P of the eigenvectors)

An application of Theorem 5 (Rapid exponents via diagonalization)

Let A be a matrix such that

$$
\text { E.g. } \quad \begin{aligned}
A^{2} & =\left(B D B^{-1}\right)\left(B D B^{-1}\right) \\
& =B D D B^{-1} \\
& =B D^{2} B^{-1}
\end{aligned}
$$

$$
\mathrm{A}=\mathrm{BDB}^{-1}
$$

for some diagonal matrix D . Then, for all $n \geq 0$,

$$
\mathrm{A}^{n}=\mathrm{BD}^{n} \mathrm{~B}^{-1}
$$

$$
\begin{aligned}
A^{-1} & =\left(B D B^{-1}\right)^{-1} \\
& =B D^{-1} B^{-1}
\end{aligned}
$$

The entries of D^{n} are the nth power of the entries of D.

Exercise 9

$$
A=\left[\begin{array}{ccc}
3 & -1 & 2 \\
0 & 2 & -2 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
3 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & -1 & 2 \\
0 & 1 & -2 \\
0 & 0 & 1
\end{array}\right]
$$

(a) Compute A^{2} using the factorization.
(b) Compute A^{-1}.
(c) Compute A^{100}.

Exercise 9 (solution)

$$
A=\left[\begin{array}{ccc}
3 & -1 & 2 \\
0 & 2 & -2 \\
0 & 0 & 1
\end{array}\right]=\underbrace{\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{array}\right]}_{B} \underbrace{\left[\begin{array}{lll}
3 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right]}_{D} \underbrace{\left[\begin{array}{ccc}
1 & -1 & 2 \\
0 & 1 & -2 \\
0 & 0 & 1
\end{array}\right]}_{B^{-1}}
$$

(a) Compute A^{2} using the factorization.

$$
\begin{aligned}
A & =B D B^{-1} \\
A^{2} & =B D B^{-1} B D B^{-1} \\
& =B D D B^{-1}
\end{aligned}
$$

Note: $D^{2}=\left[\begin{array}{lll}3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{lll}3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{ccc}3^{2} & 0 & 0 \\ 0 & 2^{2} & 0 \\ 0 & 0 & 1^{2}\end{array}\right]$

$$
A^{2}=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
9 & 0 & 0 \\
0 & 4 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & -1 & 2 \\
0 & 1 & -2 \\
0 & 0 & 1
\end{array}\right]
$$

(b) Compute A^{-1}.

$$
\begin{aligned}
& A=B D B^{-1} \\
& A^{-1}=B D^{-1} B^{-1} \\
& \text { Note: } D^{-1}=\left[\begin{array}{ccc}
3^{-1} & 0 & 0 \\
0 & 2^{-1} & 0 \\
0 & 0 & 1^{-1}
\end{array}\right] \\
& A^{-1}=B\left[\begin{array}{ccc}
1 / 3 & 0 & 0 \\
0 & 1 / 2 & 0 \\
0 & 0 & 1
\end{array}\right] B^{-1}
\end{aligned}
$$

(c) Compute A^{100}.

$$
\begin{aligned}
& A=B D B^{-1} \\
& A^{100}=\underbrace{\left(B D B^{-1}\right)\left(B D B^{-1}\right) \ldots\left(B D B^{-1}\right)}_{100} \\
&=B \underbrace{B D \ldots D B^{-1}}_{100 \text { times s }} \\
&=B D^{100} B^{-1} \\
& \text { Note: } D^{100}=\left[\begin{array}{ccc}
3^{100} & 0 & 0 \\
0 & 2^{100} & 0 \\
0 & 0 & 1^{100}
\end{array}\right] \\
& A^{100}=B\left[\begin{array}{ccc}
3^{100} & 0 & 0 \\
0 & 2^{100} & 0 \\
0 & 0 & 1^{100}
\end{array}\right] B^{-1}
\end{aligned}
$$

3^{100} is much bigger than 2^{100} and 1, so A^{100} is close to $B\left[\begin{array}{lll}3^{100} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right] B^{-1}$.

One of the most unexpected and powerful results in linear algebra is that an important class of matrices always has a nice eigenbasis.

Def: A set of vectors is called orthogonal if the dot product of any pair of vectors is 0 . (Note: Two vectors are orthogonal if and only if they are perpendicular to each other.)

Theorem 6 (The Spectral Theorem)

If A is a symmetric matrix, then A has a basis of orthogonal eigenvectors. equal to its transpose

In fact, this goes both ways. If a matrix has an orthogonal eigenbasis, then the matrix must be symmetric.

This theorem, (and its generalizations) are of fundamental importance in differential equations, statistics, acoustics, quantum mechanics, data science, and countless other fields.

Exercise 10
Verify that the eigenbasis we found in Exercise 8 was orthogonal

Solution
From Exercise 8: $\quad\left\{\left[\begin{array}{r}-1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 1\end{array}\right]\right\}$ is an cigenbasis for $A=\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right]$
Dot product of the two vectors: $\left[\begin{array}{r}-1 \\ 1\end{array}\right] \cdot\left[\begin{array}{l}1 \\ 1\end{array}\right]=-1.1+1.1=0$ $\therefore\left\{\left[\begin{array}{r}-1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 1\end{array}\right]\right\}$ is an orthogonal eigenbasis.

Exercise 11

Is the following matrix diagonalizable?
$\left[\begin{array}{cccc}100 & 3 & \sqrt{2} & \pi \\ 3 & -70 & e^{16} & 0 \\ \sqrt{2} & e^{16} & 9 & \sqrt{2}^{\sqrt{2}} \\ \pi & 0 & \sqrt{2}^{\sqrt{2}} & 3^{3^{3}}\end{array}\right]$

Exercise 11
Is the following matrix diagonalizable?

$$
M:=\left[\begin{array}{cccc}
100 & 3 & \sqrt{2} & \pi \\
3 & -70 & e^{16} & 0 \\
\sqrt{2} & e^{16} & 9 & \sqrt{2}^{\sqrt{2}} \\
\pi & 0 & \sqrt{2}^{\sqrt{2}} & 3^{3^{3}}
\end{array}\right]
$$

Solution

- M is symmetric $\left(M^{\top}=M\right)$, so by the Spectral Thu M has an (orthogonal) eigenbasis.
- Since M has an eigenbasis, it is diagonalizable by Tho 5 .

