Lecture 15b
Eigenbases (finding eigenbases)

Review

Recall: Definition (Eigenbases)

An eigenbasis for an $n \times n$-matrix A is a basis for \mathbb{R}^{n} consisting of eigenvectors of A.

Recall (Exercise 1 from the last lecture)

The following vectors form an eigenbasis for A.

$$
\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
0 \\
-2 \\
1
\end{array}\right],\left[\begin{array}{c}
2 \\
-1 \\
1
\end{array}\right]\right\} \quad A:=\left[\begin{array}{ccc}
2 & 2 & 4 \\
0 & 1 & -2 \\
0 & 1 & 4
\end{array}\right]
$$

Observation 1 (Matrix multiplication and eigenbases)

Let $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{n}$ be an eigenbasis for A , and let λ_{i} denote the eigenvalue of v_{i}.
If $w=c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{n} v_{n}$, then
Use eigenbasis
to speed up
multiplication!

$$
\begin{aligned}
\mathrm{A} \mathrm{w} & =c_{1} \lambda_{1} \mathrm{v}_{1}+c_{2} \lambda_{2} \mathrm{v}_{2}+\cdots+c_{n} \lambda_{n} \mathrm{v}_{n} \\
\mathrm{~A}^{2} \mathrm{w} & =c_{1} \lambda_{1}^{2} \mathrm{v}_{1}+c_{2} \lambda_{2}^{2} \mathrm{v}_{2}+\cdots+c_{n} \lambda_{n}^{2} \mathrm{v}_{n} \\
\mathrm{~A}^{m} \mathrm{w} & =c_{1} \lambda_{1}^{m} \mathrm{v}_{1}+c_{2} \lambda_{2}^{m} \mathrm{v}_{2}+\cdots+c_{n} \lambda_{n}^{m} \mathrm{v}_{n}
\end{aligned}
$$

Algorithm 2 (How to find an eigenbasis)

We are given an $n \times n$ matrix A.Find the eigenvalues of A (by factoring the characteristic polynomial.)
2. For each eigenvalue, find a basis of the λ-eigenspace.

- That is, a basis for $\operatorname{ker}(\mathrm{A}-\lambda \mathrm{Id})$
(3) Put all the vectors together into a set.
- If there are n-many vectors, the set is an eigenbasis!
- If there are fewer than n-many vectors, no eigenbasis exists!

Fact: This algorithm constructs a linearly independent set.

Exercise 4

Find an eigenbasis for $\left[\begin{array}{ll}1 & 1 \\ 1 & 3\end{array}\right]$ or state it doesn't exist.
(Use Algorithm 2)

Solution to Exercise 4 (page 1/3) using Algorithm 2
Set $A:=\left[\begin{array}{ll}1 & 1 \\ 1 & 3\end{array}\right]$.
Step (1) Find the eigenvalues of A by factoring the characteristic polynomial.

- Find the characteristic polynomial of A :

$$
\begin{aligned}
P_{A}(x) & =\operatorname{det}(x \mid d-A) \\
& =\operatorname{det}\left(\left[\begin{array}{cc}
x-1 & -1 \\
-1 & x-3
\end{array}\right]\right) \\
& =(x-1)(x-3)-1 \\
& =x^{2}-4 x+3-1
\end{aligned}
$$

So $P_{A}(x)=x^{2}-4 x+2$

- Find roots of $P_{A}(x)$ (quadratic formula or "complete the square")

The roots are $\frac{4 \pm \sqrt{16-8}}{2}=\frac{4 \pm \sqrt{8}}{2}=\frac{4 \pm 2 \sqrt{2}}{2}=2 \pm \sqrt{2}$
So the eigenvalues of A are $\lambda_{1}=2+\sqrt{2}$ and $\lambda_{2}=2-\sqrt{2}$

Solution to Exercise 4 (page 2/3)
Step (2)(i): Find a basis for the λ_{1}-eigenspace of $A\left(\lambda_{1}=2+\sqrt{2}\right)$, that is, find a basis for $\operatorname{ker}(A-(2+\sqrt{2}) \mid d)$.

$$
A-(2+\sqrt{2})\left(d=\left[\begin{array}{ll}
1 & 1 \\
1 & 3
\end{array}\right]-\left[\begin{array}{cc}
2+\sqrt{2} & 0 \\
0 & 2+\sqrt{2}
\end{array}\right]=\left[\begin{array}{cc}
1-2-\sqrt{2} & 1 \\
1 & 3-2-\sqrt{2}
\end{array}\right]=\left[\begin{array}{ccc}
-1-\sqrt{2} & 1 \\
1 & 1-\sqrt{2}
\end{array}\right]\right.
$$

Solve for $(A-(2+\sqrt{2}) 1 d)\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$:

$$
\left.\begin{array}{rl}
{\left[\begin{array}{cc|c}
-1-\sqrt{2} & 1 & 0 \\
1 & 1-\sqrt{2} & 0
\end{array}\right]} & \rightarrow\left[\begin{array}{cc|c}
1 & 1-\sqrt{2} & 0 \\
-1-\sqrt{2} & 1 & 0
\end{array}\right]
\end{array}\right]\left[\begin{array}{ll|l}
1 & 1-\sqrt{2} & 0 \\
0 & \underbrace{(1+\sqrt{2})(1-\sqrt{2})+1} & 0
\end{array}\right] \quad\left[\begin{array}{cc|c}
1 & 1-\sqrt{2} & 0 \\
0 & 0 & 0
\end{array}\right] \quad\left[\begin{array}{ll}
{[1+\sqrt{2}) R_{1}+R_{2}} & (1+\sqrt{2})(1-\sqrt{2})+1=1-(\sqrt{2})^{2}+1=1-2+1=0
\end{array}\right.
$$

Since the and column has no leading 1, let $y=t$.
Back substitution: $x+(1-\sqrt{2}) y=0 \Rightarrow x+(1-\sqrt{2}) t=0 \Rightarrow x=(-1+\sqrt{2}) t$
General solution to $(A-(2+\sqrt{2}) \mid d)\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$ is $\left[\begin{array}{c}(-1+\sqrt{2}) t \\ t\end{array}\right]=t\left[\begin{array}{c}-1+\sqrt{2} \\ 1\end{array}\right]$
A basis for the λ_{1}-eigenspace of A is $\left\{\left[\begin{array}{c}-1+\sqrt{2} \\ 1\end{array}\right]\right\}$

Solution to Exercise 4 (page 3/3)
Step (2)(ii): Find a basis for the λ_{2}-eigenspace of $A\left(\lambda_{2}=2-\sqrt{2}\right)$, that is, find a basis for $\operatorname{ker}(A-(2-\sqrt{2}) \mid d)$.

$$
A-(2-\sqrt{2})\left(d=\left[\begin{array}{ll}
1 & 1 \\
1 & 3
\end{array}\right]-\left[\begin{array}{cc}
2-\sqrt{2} & 0 \\
0 & 2-\sqrt{2}
\end{array}\right]=\left[\begin{array}{cc}
1-2+\sqrt{2} & 1 \\
1 & 3-2+\sqrt{2}
\end{array}\right]=\left[\begin{array}{cc}
-1+\sqrt{2} & 1 \\
1 & 1+\sqrt{2}
\end{array}\right]\right.
$$

Solve for $(A-(2-\sqrt{2}) / d)\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$:

$$
\left.\begin{array}{rl}
{\left[\begin{array}{cc|c}
-1+\sqrt{2} & 1 & 0 \\
1 & 1+\sqrt{2} & 0
\end{array}\right]} & \rightarrow\left[\begin{array}{cc|c}
1 & 1+\sqrt{2} & 0 \\
-1+\sqrt{2} & 1 & 0
\end{array}\right] \rightarrow\left[\begin{array}{cc|c}
1 & 1+\sqrt{2} & 0 \\
0 & (1-\sqrt{2})(1+\sqrt{2})+1 & 0
\end{array}\right]
\end{array}\left[\begin{array}{cc|c}
1 & 1+\sqrt{2} & 0 \\
0 & 0 & 0
\end{array}\right]\right] \text { Swap } R_{1}, R_{2} \quad\left[\begin{array}{ll}
(1-\sqrt{2})(1+\sqrt{2})+1=1-(\sqrt{2})^{2}+1=1-2+1=0
\end{array}\right.
$$

Since the and column has no leading 1, let $y=t$.
Back substitution: $x+(1+\sqrt{2}) y=0 \Rightarrow x+(1+\sqrt{2}) t=0 \Rightarrow x=(-1-\sqrt{2}) t$
General solution to $(A-(2-\sqrt{2}) 1 d)\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$ is $\left[\begin{array}{c}(-1-\sqrt{2}) t \\ t\end{array}\right]=t\left[\begin{array}{c}-1-\sqrt{2} \\ 1\end{array}\right]$
A basis for the λ_{2} - eigenspace of A is $\left\{\left[\begin{array}{c}-1-\sqrt{2} \\ 1\end{array}\right]\right\}$
Step (3) Put all vectors together into a set. If there are n vectors, it's an eigenbasis! (otherwise, $\left.\begin{array}{l}\text { none exists }\end{array}\right)$ The set $\left\{\left[\begin{array}{c}-1+\sqrt{2} \\ 1\end{array}\right],\left[\begin{array}{c}-1-\sqrt{2} \\ 1\end{array}\right]\right\}$ is an eigenbasis for A.

Exercise 5
Find an eigenbasis for

$$
\left[\begin{array}{ll}
1 & -1 \\
1 & -1
\end{array}\right]
$$

or state it doesn't exist.
Use Algorithm 2 (How to find an eigenbasis)

Exercise 5
Find an eigenbasis for

$$
A:=\left[\begin{array}{ll}
1 & -1 \\
1 & -1
\end{array}\right]
$$

or state it doesn't exist.
Step (1): - Find characteristic polynomial and compute roots
$\begin{array}{ll}(\text { Find } & P_{A}(x)=\operatorname{det}(x \mid d-A)=\operatorname{det}\left(\left[\begin{array}{cc}x-1 & 1 \\ -1 & x+1\end{array}\right]\right)=(x-1)(x+1)+1=x^{2}-1+1=x^{2} \\ \text { eigenvalues } & P_{A}(x)=x^{2}\end{array}$ eigenvalues

$$
P_{A}(x)=x^{2}
$$

of A). The only root of $P_{A}(x)=x^{2}$ is 0 . The only eigenvalue of A is 0 .
Step (2): . Find a basis for the 0 -eigenspace of A, (Find a basis that is, find a basis for $\operatorname{ker}(\underbrace{A-o l d})=\operatorname{ker}(A)$ for each
eigenspace Find solutions to $A\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right] \quad$ equal to A eigenspace Find solutions to $A\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$
of A) $\left[\begin{array}{ll|l}1 & -1 & 0 \\ 1 & -1 & 0\end{array}\right] \rightarrow\left[\begin{array}{cc|c}1 & -1 & 0 \\ 0 & 0 & 0\end{array}\right]$ Since 2nd column has no leading 1 , let $y=t$ $x-y=0 \Rightarrow x-t=0 \Rightarrow x=t$ General solution is $\left[\begin{array}{l}t \\ t\end{array}\right]=t\left[\begin{array}{l}1 \\ 1\end{array}\right]$.
A basis for the o-eigenspace of A is $\left.\left[\begin{array}{l}1 \\ 1\end{array}\right]\right\}$
Slep(3): Since $\left[\left[\begin{array}{l}1 \\ 1\end{array}\right]\right\}$ has fewer than $n=2$ vectors, no eigenbasis exists. Slide $4 / 8$

Fact 3 (When are there enough eigenvectors to have an eigenbasis?)
A matrix A has an eigenbasis if and only if
shorthand for the λ-eigenspace of A

$$
\operatorname{width}(A)=\sum_{\text {eigenvalues } \lambda} \operatorname{dim}\left(\widetilde{E_{\lambda}(A)}\right)
$$

Reasoning: A basis for $E_{\lambda}(A)$ (the λ-eigenspace of A) has $\operatorname{dim}\left(E_{\lambda}(A)\right)$-many vectors.

For example, if A is 4×4 with eigenvalues λ_{1}, λ_{2} and the dimension of the λ_{1}-eigenspace of A is 1 and the dimension of the λ_{2}-eigenspace of A is 1 , then width $(A) \neq 1+1$ so A has no eigenbasis.
Exercise 6

$$
\text { Let } A:=\left[\begin{array}{lll}
2 & 2 & 1 \\
2 & 5 & 2 \\
1 & 2 & 2
\end{array}\right]
$$

Show that A has an eigenbasis (without finding an eigenbasis).
Note: A has two eigenvalues, 1 and 7.

Exercise 6

Let $A==\left[\begin{array}{lll}2 & 2 & 1 \\ 2 & 5 & 2 \\ 1 & 2 & 2\end{array}\right]$.
Show that A has an eigenbasis (without finding an eigenbasis).
Note: A has two eigenvalues, 1 and 7 .
Find basis/ dimension of $\underbrace{E_{1}(A)}=\operatorname{ker}(A-1 I d)$ taster
(Well compute just the di mansion)

$$
A-11 d=\left[\begin{array}{ccc}
2-1 & 2 & 1 \\
2 & 5-1 & 2 \\
1 & 2 & 2-1
\end{array}\right]=\left[\begin{array}{lll}
1 & 2 & 1 \\
2 & 4 & 2 \\
1 & 2 & 1
\end{array}\right]
$$

Since all columns are multiple of each other, $\operatorname{rank}(A-1 I d)=1$.
Recall "Rank-Nullity Theorem":

$$
\begin{aligned}
& \text { "Ran k-Nullity Theorem": } \\
& \operatorname{width}(M)=\operatorname{rank}(M)+\operatorname{dim}(\operatorname{ker}(M))
\end{aligned}
$$

So $\operatorname{dim}(\operatorname{ker}(A-1 I d))=3-\operatorname{rank}(A-1 I d)$

$$
=3-1
$$

$$
=2
$$

\therefore Dimension of $E_{1}(A)$ is 2 .

Find basis/ $\underbrace{\text { the }}_{\begin{array}{c}\text { dimeter to } \\ \text { compute }\end{array}}$ of $\underbrace{E_{7}(A)}_{7 \text {-eigenspace of } A}$
Since 7 is an eigenvalue of A, a 7-eigenvector exists.
So the 7 -eigenspace contains a non-zero vector.
Recall: The only subspace with dimension O is the zero subspace. All other subspaces have dimension 1 or higher.
$\xrightarrow{\rightarrow}$ So $\operatorname{dim}\left(E_{7}(A)\right) \geq 1$.
$\sum_{\text {eigenvalues }} \operatorname{dim}\left(E_{\lambda}(A)\right)=\underbrace{\operatorname{dim}\left(E_{1}(A)\right)}_{2}+\underbrace{\operatorname{dim}\left(E_{7}(A)\right)}_{\text {at least } 1}$

$$
\geqslant 3
$$

By Fact 3,
\therefore A has an eigenbasis.

A useful trick

If λ is an eigenvalue of A, then

- there is at least one λ-eigenvector, so
- the λ-eigenspace has dimension at least 1 , so
- a basis for the λ-eigenspace has at least 1 vector.

Hence, each distinct root of the characteristic polynomial guarantees at least one vector in our potential eigenbasis.

Theorem 4 (n-many distinct eigenvalues)

If an $n \times n$-matrix has n-many distinct eigenvalues, it must have an eigenbasis.

Note: If an $n \times n$-matrix has fewer than n distinct eigenvalues, it may have an eigenbasis (We need to use Algorithm 2 or another method to find out for sure).

Exercise 7
Determine whether the following matrix has an eigenbasis.

$$
\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 0 & 0 \\
1 & 1 & 1
\end{array}\right]
$$

(Hint: Compute the eigenvalues then use Theorem 4)

Exercise 7
Determine whether the following matrix has an eigenbasis.

$$
A:=\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 0 & 0 \\
1 & 1 & 1
\end{array}\right]
$$

- Find characteristic polynomial

$$
\begin{aligned}
P_{A}(x) & =\operatorname{det}(x \mid d-A) \\
& =\operatorname{det}\left(\left[\begin{array}{ccc}
x-1 & 2 & 3 \\
0 & x & 0 \\
1 & 1 & x-1
\end{array}\right]\right) \\
& =x(-1)^{2+2} \operatorname{det}\left(\left[\begin{array}{cc}
x-1 & 3 \\
1 & x-1
\end{array}\right]\right) \\
& =x[(x-1)(x-1)-3] \\
& =x\left[x^{2}-2 x+1-3\right] \\
P_{A}(x) & =x^{3}-2 x^{2}-2 x
\end{aligned}
$$

- compute roots

$$
\rho_{A}(x)=\underset{\lambda_{1}=0}{x}\left(x^{2}-2 x-2\right)
$$

One of the roots is $\lambda_{1}=0$
The other two roots...

$$
\begin{aligned}
& \frac{2 \pm \sqrt{4+8}}{2}=\frac{2 \pm \sqrt{12}}{2}=\frac{2 \pm 2 \sqrt{3}}{2}=1 \pm \sqrt{3} \\
& \lambda_{2}=1+\sqrt{3} \text { and } \lambda_{3}=1-\sqrt{3}
\end{aligned}
$$

\therefore By Theorem 4, since A is 3×3 and has 3 distinct eigenvalues, A must have an eigenbasis.

Theorem (A bound from the characteristic polynomial)

Let λ be an eigenvalue of A. Then

$$
1 \leq \operatorname{dim}\left(E_{\lambda}(A)\right) \leq\left(\# \text { of times }(x-\lambda) \text { appears in } \rho_{A}(x)\right)
$$

That is, if λ is a root of the characteristic polynomial $\rho_{A}(x)$ with multiplicity m, then the dimension of the eigenspace is between 1 and m.

Two notions of multiplicity for eigenvalues

There are two different 'ways to count' an eigenvalue.

- $\operatorname{dim}\left(E_{\lambda}(A)\right)$ is the geometric multiplicity of the eigenvalue λ.
- (\# of times $(x-\lambda)$ appears in $\left.\rho_{A}(x)\right)$ is the algebraic multiplicity of the eigenvalue λ.

