# Lecture 15a

# **Eigenbases**



# Recap: Finding a basis for standard subspaces

| Subspace                   | A method to find one basis                  |  |  |  |
|----------------------------|---------------------------------------------|--|--|--|
| Image of A                 | Put A in REF,                               |  |  |  |
|                            | keep columns of A corresponding to L1s      |  |  |  |
| Span of $\{v_1, v_n\}$     | $=$ im(concatenation), use $\uparrow$       |  |  |  |
| Kernel of A                | Put A into REF, find gen. sol. to $Ax = 0$  |  |  |  |
|                            | rewrite as linear combination, keep vectors |  |  |  |
| Solutions to HSLE          | $= \ker(coeff. matrix), use \uparrow$       |  |  |  |
| $\lambda$ -eigenspace of A | $= \ker(A - \lambda Id)$ , use $\uparrow$   |  |  |  |

Slide 2/7

# Recap: Finding the dimension of standard subspaces

| Subspace                   | Dimension                                                       |  |  |
|----------------------------|-----------------------------------------------------------------|--|--|
| Image of A                 | rank(A)                                                         |  |  |
| Span of $\{v_1, v_n\}$     | rank(concatenation)                                             |  |  |
| Kernel of A                | $\operatorname{width}(A) - \operatorname{rank}(A)$              |  |  |
| Solutions to HSLE          | (# of variables) $-\text{rank}(\text{coeff. matrix})$           |  |  |
| $\lambda$ -eigenspace of A | $\operatorname{width}(A) - \operatorname{rank}(A - \lambda Id)$ |  |  |

Slide 3/7

> Ker (A-xid)

In each case, the dimension is easy if we know a certain rank.

# Exercise 4 (Review from Lecture 14a) (a) Find a basis of the 2-eigenspace of $M := \begin{bmatrix} 2 & 2 & 4 \\ 0 & 1 & -2 \\ 0 & 1 & 4 \end{bmatrix}$ (b) What is the dimension of this eigenspace? (Recall) Def The X-eigenspace of M is {vin Rwidth(M) where Mv=Xv} So the 2-eigenspace of M is $W = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$ in $\mathbb{R}^3$ where $\mathbb{M} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = 2 \begin{bmatrix} x \\ y \\ z \end{bmatrix}$ Note $W = \begin{cases} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$ where $\begin{cases} 2-2 & 2 & 4 \\ 0 & 1-2 & -2 \\ 0 & 1 & 4-2 \end{cases} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ $(M-2|d_{3k})$ $\begin{vmatrix} x \\ y \end{vmatrix} = \begin{vmatrix} 0 \\ 0 \end{vmatrix}$ i.e. $W = \operatorname{ker}\left( \begin{bmatrix} 0 & 2 & 4 \\ 0 & -1 & -2 \\ 0 & 1 & 2 \end{bmatrix} \right)$ .

(Review from Exercise 4 Lecture 14a)

Algorithm 1 (Find a basis for the kernel of a matrix) says we just need to solve for  $\begin{bmatrix} 0 & 2 & 4 \\ 0 & -1 & -2 \\ 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ write the solutions as linear combinations of a set S of vectors — the set S will be a basis for W. Row reduce : Note: If there had been K number of columns Without a  $R_1 \mapsto \frac{1}{2} R_1$ leading 1,  $R_2 \mapsto R_1 + R_2$ 1st and 3rd columns dím(w) = k  $R_3 \mapsto -R_1 + R_3$ have no leading 1 Back substitution:  $y + 2z = 0 \implies y + 2r = 0 \implies y = -2r$ General solution =  $\begin{pmatrix} t \\ -2r \\ r \end{pmatrix} = \begin{pmatrix} t \\ 0 \\ r \end{pmatrix} + \begin{pmatrix} 0 \\ -2r \\ r \end{pmatrix} = t \begin{vmatrix} 1 \\ 0 \\ r \end{pmatrix} + r \begin{pmatrix} 8 \\ -2 \\ 1 \end{pmatrix} .$ a) A basis for W is  $\begin{cases} 1 \\ -2 \\ 1 \end{cases}$ . B so  $\dim(W) = 2$ . Let's do a sanity check. Check that at least  $\left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\-2\\1 \end{bmatrix} \right\}$  is a subset of the 2-eigenspace of M. Check:  $M \begin{bmatrix} 0 \\ 0 \end{bmatrix} \stackrel{?}{=} 2 \begin{bmatrix} 0 \\ 0 \end{bmatrix}$  and  $M \begin{bmatrix} 0 \\ -2 \\ 1 \end{bmatrix} = 2 \begin{bmatrix} 0 \\ -2 \\ 1 \end{bmatrix}$  $\begin{bmatrix} 2 & 2 & 4 \\ 0 & 1 & -2 \\ 0 & 1 & 4 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix} = 2 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \checkmark$ So at least our
set of two vectors
is a subset of W,  $\begin{bmatrix} 2 & 2 & 4 \\ 0 & 1 & -2 \\ 0 & 1 & 4 \end{bmatrix} \begin{bmatrix} 0 \\ -2 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ -4 \\ 2 \end{bmatrix} = 2 \begin{bmatrix} 0 \\ -2 \\ 1 \end{bmatrix} \checkmark$ 



The 2-eigenspace of M, W, has dimension 2. So W is a plane where every vector in W is stretched by a factor of 2 when multiplied by M.

# Motivation

## Recall: Eigenvectors turn matrix multiplication into scalar multiplication. $A v = \lambda v$

#### Simplifying multiplication by A

Let A be a specific matrix. We can simplify multiplication by A (that is, the action of the linear transformation  $T_A$ ).

- The action on any vector can be reduced to the action on a basis. Specifically, if  $w = c_1v_1 + c_2v_2 + \cdots + c_nv_n$ , then If we know what A does to each basis vector, we can compute the actron of A  $Aw \stackrel{l}{=} c_1Av_1 + c_2Av_2 + \cdots + c_nAv_n$  on any vector in the subspace
- Matrices act on their eigenvectors in a particularly simple way.

$$Av = \lambda v$$

Slide 4

So, we can simplify a matrix multiplication using a basis of eigenvectors.

# We call 'a basis of eigenvectors' an eigenbasis.

## Definition 1: Eigenbases

An eigenbasis for an  $n \times n$ -matrix A is a basis for  $\mathbb{R}^n$  consisting of eigenvectors of A.

#### Exercise 1

Let 
$$S := \left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\-2\\1 \end{bmatrix}, \begin{bmatrix} 2\\-1\\1 \end{bmatrix} \right\}$$
  $A := \begin{bmatrix} 2 & 2 & 4\\0 & 1 & -2\\0 & 1 & 4 \end{bmatrix}$ 

Do the vectors of S form an eigenbasis for A?

Check (2) first.  
The vectors 
$$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
 and  $\begin{bmatrix} 0 \\ -2 \\ 1 \end{bmatrix}$  are eigenvectors (with eigenvalue 2) of A  
(by the previous exercise).  
Slide 5/7

$$A \begin{bmatrix} 2\\-1\\1 \end{bmatrix} = \begin{pmatrix} 2 & 2 & 4\\0 & 1 & -2\\0 & 1 & 4 \end{bmatrix} \begin{bmatrix} 2\\-1\\1 \end{bmatrix} = \begin{pmatrix} 2 \cdot 2 - 2 \cdot 1 + 4\\-1 - 2\\-1 + 4 \end{bmatrix} = \begin{bmatrix} 6\\-3\\3 \end{bmatrix} = 3 \begin{bmatrix} 2\\-1\\1 \end{bmatrix}, \text{ so } \begin{bmatrix} 2\\-1\\1 \end{bmatrix} \text{ is an eigenvector of } A$$

$$\square$$
 Do the vectors form a basis for  $\mathbb{R}^3$ ?

Recall: To check that a set of n-many vectors is a basis for R<sup>n</sup>, we just need to check that the concatenation of the vectors is invertible OR has rank n OR has determinant nonzero  $s := \left\{ \begin{bmatrix} 1 & 0 & 2 \\ 0 & -2 & -1 \\ 0 & 1 & 1 \end{bmatrix} \right\}$  Concatenation  $C := \begin{bmatrix} 1 & 0 & 2 \\ 0 & -2 & -1 \\ 0 & 1 & 1 \end{bmatrix}$   $det \begin{bmatrix} 1 & 0 & 2 \\ 0 & -2 & -1 \\ 0 & 1 & 1 \end{bmatrix} = -det \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} = -1 \neq 0$ swapping two rows multiply the determinant one row to another row does not by -1 change the determinant) So the vectors of S form a basis for R<sup>3</sup>. So they form an eigenbasis for A. - the end -

#### Observation 1 (Matrix multiplication and eigenbases)

Let  $v_1, v_2, ..., v_n$  be an eigenbasis for A, and let  $\lambda_i$  denote the eigenvalue of  $v_i$ . If  $w = c_1v_1 + c_2v_2 + \cdots + c_nv_n$ , then

$$Aw = c_1\lambda_1v_1 + c_2\lambda_2v_2 + \dots + c_n\lambda_nv_n$$
$$A^2w = c_1\lambda_1^2v_1 + c_2\lambda_2^2v_2 + \dots + c_n\lambda_n^2v_n$$
$$A^mw = c_1\lambda_1^mv_1 + c_2\lambda_2^mv_2 + \dots + c_n\lambda_n^mv_n$$

This reduces matrix multiplication to several scalar multiplications!



• Write 
$$w = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
 as a linear combination of our eigenbasis  

$$w = C_{1} \vee V_{1} + C_{2} \vee V_{2} + C_{3} \vee V_{3}$$

$$\begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} = C_{1} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + C_{2} \begin{pmatrix} 0 \\ -2 \\ 1 \end{pmatrix} + C_{3} \begin{pmatrix} 2 \\ -1 \\ 1 \\ 1 \end{pmatrix}$$
Solve  $\begin{pmatrix} 1 & 0 & 2 \\ 0 - 2 & -1 \\ 0 & 1 & 1 \end{pmatrix} \begin{bmatrix} C_{1} \\ C_{2} \\ C_{3} \end{bmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$ 
Concatenation of our basis vectors

Row reduce

| $\left( 1 - 2 \right)$ |                           | [102] | L)               | ( t | 0  | 2 | [ |
|------------------------|---------------------------|-------|------------------|-----|----|---|---|
|                        |                           | οιι   | $  \rightarrow$  | 0   | L. | ι | 1 |
|                        |                           | 0-2-1 | i l              | 0   | 0  | L | 3 |
| (° '                   | J                         | C     | )                |     |    |   |   |
|                        | $R_2 \leftrightarrow R_3$ |       | $R_3 \mapsto 2R$ | 2+1 | 23 |   |   |

Note: Every column left of the vertical line has a leading 1, so we have one unique solution (as expected, since S is a basis for R<sup>3</sup>)

Back substitute:  

$$C_{1} + 2C_{3} = 1 \implies C_{1} + 2(3) = 1 \implies C_{1} = 1 - 6 = -5$$

$$C_{2} + C_{3} = 1 \implies C_{2} + 3 = 1 \implies C_{2} = -2$$

$$C_{3} = 3$$

$$C_{3} = 3$$

$$C_{1} = -5 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} - 2 \begin{bmatrix} 0 \\ -2 \\ 1 \end{bmatrix} + 3 \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix}$$

$$C_{2} = -5 (1) - 2 = -5 + 6 = 1 \quad \forall$$

$$W = -5 \quad \forall_{1} - 2 \quad \forall_{2} + 3 \quad \forall_{3}$$

By Observation 1, we have

$$A^{100} \ \omega = -5 \ A^{100} v_1 - 2 \ A^{100} v_2 + 3 \ A^{100} v_3$$

$$= -5 \ 2^{100} v_1 - 2 \ 2^{100} v_2 + 3 \ 3^{100} v_3$$
because
$$A \left[ \begin{smallmatrix} l \\ 0 \\ 0 \end{smallmatrix} \right] = 2 \left[ \begin{smallmatrix} l \\ 0 \\ 0 \end{smallmatrix} \right] A \left[ \begin{smallmatrix} -2 \\ -2 \\ -1 \\ 1 \end{smallmatrix} \right] = 2 \left[ \begin{smallmatrix} l \\ 0 \\ 0 \end{smallmatrix} \right] - 2 \left[ \begin{smallmatrix} 2 \\ -2 \\ -1 \\ 1 \end{smallmatrix} \right] = 3 \left[ \begin{smallmatrix} 2 \\ -1 \\ -1 \\ 1 \end{smallmatrix} \right]$$
5. 
$$A^{100} \left[ \begin{smallmatrix} l \\ 1 \\ 1 \end{smallmatrix} \right] = -5 \ 2^{100} \left[ \begin{smallmatrix} l \\ 0 \\ 0 \\ 0 \end{smallmatrix} \right] - 2 \ 2^{100} \left[ \begin{smallmatrix} 2 \\ -2 \\ -1 \\ 1 \end{smallmatrix} \right] + 3 \ 3^{100} \left[ \begin{smallmatrix} 2 \\ -1 \\ -1 \\ 1 \end{smallmatrix} \right]$$

#### Warning!

## Eigenbases don't always exist!

#### Exercise 3

Show that the following matrix does not have an eigenbasis.

$$\mathcal{B} := \begin{bmatrix} 2 & 3 \\ 0 & 2 \end{bmatrix}$$

- To find eigenvalues, write down the characteristic polynomial of B:  $P_{B}(x) = det(x | d - B) = det\begin{pmatrix} x - 2 & -3 \\ 0 & x - 2 \end{pmatrix} = (x - 2)(x - 2).$
- Find the roots of P<sub>B</sub>(x):
   x=2 is the only root
   So the only eigenvalue of B is λ=2.

# Slide 7/7

• Find the 2-eigenspace of B.  
(Recall: the 2-eigenspace of B is 
$$\ker (B-214)$$
  
 $= \ker (\begin{bmatrix} 2-2 & 3\\ 0 & 2-2 \end{bmatrix})$   
 $= \ker (\begin{bmatrix} 0 & 3\\ 0 & 0 \end{bmatrix})$   
those reduce to find solution to  $\begin{bmatrix} 0 & 3\\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 & 1\\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 & 1\\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\$