Lecture 15a

Eigenbases

Slide $1 / 7$

Review

Recap: Finding a basis for standard subspaces

Subspace	A method to find one basis
Image of A	Put A in REF, keep columns of A corresponding to L1s
Span of $\left\{\mathrm{v}_{1}, \ldots \mathrm{v}_{n}\right\}$	$=\operatorname{im}$ (concatenation), use \uparrow
Kernel of A	Put A into REF, find gen. sol. to $A x=0$ rewrite as linear combination, keep vectors
Solutions to HSLE	$=\operatorname{ker}($ coeff. matrix), use \uparrow
λ-eigenspace of A	$=\operatorname{ker}(\mathrm{A}-\lambda I \mathrm{~d})$, use \uparrow

Review

Recap: Finding the dimension of standard subspaces

Subspace	Dimension
Image of A	$\operatorname{rank}(\mathrm{A})$
Span of $\left\{\mathrm{v}_{1}, \ldots \mathrm{v}_{n}\right\}$	$\operatorname{rank}(\operatorname{concatenation)}$
Kernel of A	width(A) $-\operatorname{rank}(\mathrm{A})$
Solutions to HSLE	(\# of variables) $-\operatorname{rank}($ coeff. matrix $)$
λ-eigenspace of A	width(A) $-\operatorname{rank}(\mathrm{A}-\lambda \mathrm{Id})$

$$
\operatorname{ker}(A-x \mid d)
$$

In each case, the dimension is easy if we know a certain rank.

Exercise 4 (Review from Lecture 14a)
(a) Find a basis of the 2-eigenspace of

$$
M:=\left[\begin{array}{ccc}
2 & 2 & 4 \\
0 & 1 & -2 \\
0 & 1 & 4
\end{array}\right]
$$

(b) What is the dimension of this eigenspace?
(Recall) Def The λ-eigenspace of M is $\left\{v\right.$ in $\mathbb{R}^{\text {width }(M)}$ where $\left.M v=\lambda v\right\}$
So the 2-eigenspace of M is $W:=\left\{\left[\begin{array}{l}x \\ y \\ z\end{array}\right]\right.$ in \mathbb{R}^{3} where $\left.M\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=2\left[\begin{array}{l}x \\ y \\ z\end{array}\right]\right\}$
Note $\omega=\left\{\left[\begin{array}{l}x \\ y \\ z\end{array}\right]\right.$ where $\left.\left[\begin{array}{cccc}2-2 & 2 & 4 \\ 0 & 1-2 & -2 \\ 0 & 1 & 4-2\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right]\right\}$

$$
\left(M-2 \mid d_{3 \times 3}\right)\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

$$
\text { i.e. } w=\operatorname{ker}\left(\left[\begin{array}{ccc}
0 & 2 & 4 \\
0 & -1 & -2 \\
0 & 1 & 2
\end{array}\right]\right)
$$

(Review from Exercise 4 Lecture 14a)
Algorithm 1 (Find a basis for the kernel of a matrix) says
we just need to solve for $\left[\begin{array}{ccc}0 & 2 & 4 \\ 0 & -1 & -2 \\ 0 & 1 & 2\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$,
write the solutions as linear combinations of a set S of vectors - the set S will be a basis for W,

$$
y+2 z=0 \Rightarrow y+2 r=0 \Rightarrow y=-2 r
$$

General solution $=\left[\begin{array}{c}t \\ -2 r \\ r\end{array}\right]=\left[\begin{array}{l}t \\ 0 \\ 0\end{array}\right]+\left[\begin{array}{c}0 \\ -2 r \\ r\end{array}\right]=t\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]+r\left[\begin{array}{c}0 \\ -2 \\ 1\end{array}\right]$.
\therefore a) basis for ω is $\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}0 \\ -2 \\ 1\end{array}\right]\right\}$ b) so $\operatorname{dim}(\omega)=2$
Let's do a sanity check. Check that at least $\left\{\left[\begin{array}{c}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}0 \\ -2 \\ 1\end{array}\right]\right\}$ is a subset of the 2 -eigenspace of M.
Check: $M\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right] \stackrel{?}{=} 2\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$ and $M\left[\begin{array}{c}0 \\ -2 \\ 1\end{array}\right]=2\left[\begin{array}{c}0 \\ -2 \\ 1\end{array}\right]$.

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
2 & 2 & 4 \\
0 & 1 & -2 \\
0 & 1 & 4
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
2 \\
0 \\
0
\end{array}\right]=2\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \checkmark \quad} \\
& {\left[\begin{array}{ccc}
2 & 2 & 4 \\
0 & 1 & -2 \\
0 & 1 & 4
\end{array}\right]\left[\begin{array}{c}
0 \\
-2 \\
1
\end{array}\right]=\left[\begin{array}{c}
0 \\
-4 \\
2
\end{array}\right]=2\left[\begin{array}{c}
0 \\
-2 \\
1
\end{array}\right]}
\end{aligned}
$$

The 2-eigenspace of M, ω, has dimension 2. So W is a plane where every vector in ω is stretched by a factor of 2 when multiplied by M.

Motivation
Recall: Eigenvectors turn matrix multiplication into scalar multiplication.

$$
A v=\lambda v
$$

Simplifying multiplication by A
Let A be a specific matrix. We can simplify multiplication by A (that is, the action of the linear transformation T_{A}).

- The action on any vector can be reduced to the action on a basis. Specifically, if $w=c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{n} v_{n}$, then
If we know what A does to each basis vector, we can compute

$$
A w \stackrel{\text { b }}{=} c_{1} A v_{1}+c_{2} A v_{2}+\cdots+c_{n} A v_{n} \begin{gathered}
\text { the action of } A \\
\text { on any } \\
\text { vector in the } \\
\text { subspace }
\end{gathered}
$$

- Matrices act on their eigenvectors in a particularly simple way.

$$
A v=\lambda v
$$

So, we can simplify a matrix multiplication using a basis of eigenvectors.

We call 'a basis of eigenvectors' an eigenbasis.
Definition 1: Eigenbases
An eigenbasis for an $n \times n$-matrix A is a basis for \mathbb{R}^{n} consisting of eigenvectors of A.

Exercise 1
Let $S:=\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}0 \\ -2 \\ 1\end{array}\right],\left[\begin{array}{c}2 \\ -1 \\ 1\end{array}\right]\right\} \quad A:=\left[\begin{array}{ccc}2 & 2 & 4 \\ 0 & 1 & -2 \\ 0 & 1 & 4\end{array}\right]$
Do the vectors of S form an eigenbasis for A ?
Check: (1) Do the vectors form a basis for \mathbb{R}^{3} ?
(2) Is each vector an eigenvector of A?

Check (2) first.
The vectors $\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$ and $\left[\begin{array}{c}0 \\ -2 \\ 1\end{array}\right]$ are eigenvectors (with eigenvalue 2) of A

$$
\begin{aligned}
& A\left[\begin{array}{r}
2 \\
-1 \\
1
\end{array}\right]=\left[\begin{array}{ccc}
2 & 2 & 4 \\
0 & 1 & -2 \\
0 & 1 & 4
\end{array}\right]\left[\begin{array}{r}
2 \\
-1 \\
1
\end{array}\right]=\left[\begin{array}{r}
2.2-2.1+4 \\
-1-2 \\
-1+4
\end{array}\right]=\left[\begin{array}{c}
6 \\
-3 \\
3
\end{array}\right]=3\left[\begin{array}{c}
2 \\
-1 \\
1
\end{array}\right], \text { so }\left[\begin{array}{c}
2 \\
-1 \\
1
\end{array}\right] \begin{array}{c}
\text { is an } \\
\text { eigenvector } \\
\text { of } A
\end{array} \\
& \therefore \text { (with eigenvalue 3) } \\
& \therefore \text { (w, each vector of } S \text { is an eigenvector of } A .
\end{aligned}
$$

(1) Do the vectors form a basis for \mathbb{R}^{3} ?

Recall: To check that a set of n - many vectors is a basis for \mathbb{R}^{n}, we just need to check that the concatenation of the vectors is invertible

OR has rank n

OR I will check this
has determinant nonzero:
$S:=\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}0 \\ -2 \\ 1\end{array}\right],\left[\begin{array}{c}2 \\ -1 \\ 1\end{array}\right]\right\} \quad$ Concatenation $\quad C:=\left[\begin{array}{ccc}1 & 0 & 2 \\ 0 & -2 & -1 \\ 0 & 1 & 1\end{array}\right]$
$\operatorname{det}\left[\begin{array}{ccc}1 & 0 & 2 \\ 0 & -2 & -1 \\ 0 & 1 & 1\end{array}\right]=-\operatorname{det}\left[\begin{array}{ccc}1 & 0 & 2 \\ 0 & 1 & 1 \\ 0 & -2 & -1\end{array}\right]=-\operatorname{det}\left[\begin{array}{lll}1 & 0 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right]=-1 \neq 0$
swapping two rows $\quad R_{3} \mapsto 2 R_{2}+R_{3}$ (Adding a multiple of multiply the determinant one row to another row does not by -1 change the determinant)
So the vectors of S form a basis for \mathbb{R}^{3}.
So they form an eigenbasis for A.

- the end

Observation 1 (Matrix multiplication and eigenbases)

Let $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{n}$ be an eigenbasis for A , and let λ_{i} denote the eigenvalue of v_{i}. If $w=c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{n} v_{n}$, then

$$
\begin{aligned}
\mathrm{A} \mathrm{w} & =c_{1} \lambda_{1} \mathrm{v}_{1}+c_{2} \lambda_{2} \mathrm{v}_{2}+\cdots+c_{n} \lambda_{n} \mathrm{v}_{n} \\
\mathrm{~A}^{2} \mathrm{w} & =c_{1} \lambda_{1}^{2} \mathrm{v}_{1}+c_{2} \lambda_{2}^{2} \mathrm{v}_{2}+\cdots+c_{n} \lambda_{n}^{2} \mathrm{v}_{n} \\
\mathrm{~A}^{m} \mathrm{w} & =c_{1} \lambda_{1}^{m} \mathrm{v}_{1}+c_{2} \lambda_{2}^{m} \mathrm{v}_{2}+\cdots+c_{n} \lambda_{n}^{m} \mathrm{v}_{n}
\end{aligned}
$$

This reduces matrix multiplication to several scalar multiplications!

Exercise 2

Compute

From previous exercise, the matrix $A:=\left[\begin{array}{ccc}2 & 2 & 4 \\ 0 & 1 & -2 \\ 0 & 1 & 4\end{array}\right]$ has
an eigenbasis $S:=\{\underset{\text { eigenvalue 2 }}{\left[\begin{array}{c}v_{1} \\ 1 \\ 0\end{array}\right]}\left[\begin{array}{c}v_{2} \\ 0 \\ -2\end{array}\right], \underbrace{\substack{3 \\-1 \\ 1 \\ \hline \\ \hline}}_{\text {eigenvalue }}$

- Write $\omega=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ as a linear combination of our eigenbasis

$$
\begin{aligned}
\omega & =c_{1} v_{1}+c_{2} v_{2}+c_{3} v_{3} \\
{\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] } & =c_{1}\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+c_{2}\left[\begin{array}{r}
0 \\
-2 \\
1
\end{array}\right]+c_{3}\left[\begin{array}{r}
2 \\
-1 \\
1
\end{array}\right] \\
\text { Solve } & {\left[\begin{array}{ccc}
1 & 0 & 2 \\
0 & -2 & -1 \\
0 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] } \\
& \text { concatenation of our basis vectors }
\end{aligned}
$$

$$
\left.\left.\begin{array}{l}
\text { Row reduce } \\
{\left[\begin{array}{ccc|c}
1 & 0 & 2 & 1 \\
0 & -2 & -1 & 1 \\
0 & 1 & 1 & 1
\end{array}\right]}
\end{array} \underset{R_{2}}{\longrightarrow} \longrightarrow \begin{array}{ccc|c}
1 & 0 & 2 & 1 \\
0 & 1 & 1 & 1 \\
0 & -2 & -1 & 1
\end{array}\right] \rightarrow R_{3} \quad \longrightarrow\left[\begin{array}{lll|l}
1 & 0 & 2 & 1 \\
0 & 1 & 1 & 1 \\
0 & 0 & 1 & 3
\end{array}\right]\right)
$$

Note: Every column left of

$$
\text { the vertical line has a leading } 1 \text {, }
$$

So we have one unique
Solution (as expected, since

$$
\left.S \text { is a basis for } \mathbb{R}^{3}\right)
$$

$$
\begin{aligned}
& \text { Back substitute: } \\
& c_{1}+2 c_{3}
\end{aligned}=1 \Rightarrow c_{1}+2(3)=1 \Rightarrow c_{1}=1-6=-5
$$

$$
\begin{aligned}
\therefore\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] & \left.=-5\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]-2\left[\begin{array}{c}
0 \\
-2 \\
1
\end{array}\right]+3\left[\begin{array}{c}
2 \\
-1 \\
1
\end{array}\right] \quad \begin{array}{l}
\text { sanity check (at least one of the entries): } \\
\omega=-5(1)-2-0+3(2)=-5+6=1 \mathrm{~V} \\
\omega
\end{array}\right]=-5 v_{1}-2 v_{2}+3 v_{3}
\end{aligned}
$$

By Observation 1, we have

$$
\begin{aligned}
A^{100} \omega= & -5 \underbrace{A^{100} v_{1}}-2 A^{100} v_{2}+3 A^{100} v_{3} \\
= & -5 \cdot \underbrace{2^{100} v_{1}}_{\text {because }}-2 \cdot \underbrace{2^{100} v_{2}}_{\text {because }}+3 \cdot \underbrace{3^{100} v_{3}} \\
& A\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]=2\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \quad A\left[\begin{array}{c}
0 \\
-2 \\
1
\end{array}\right]=2\left[\begin{array}{c}
0 \\
-2 \\
1
\end{array}\right] \quad A\left[\begin{array}{c}
2 \\
-1 \\
1
\end{array}\right]=3\left[\begin{array}{c}
2 \\
-1 \\
1
\end{array}\right]
\end{aligned}
$$

$$
\text { So } A^{100}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]=-5.2^{100}\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]-2.2^{100}\left[\begin{array}{c}
0 \\
-2 \\
1
\end{array}\right]+3.3^{100}\left[\begin{array}{c}
2 \\
-1 \\
1
\end{array}\right]
$$

Warning!
Eigenbases don't always exist!
Exercise 3
Show that the following matrix does not have an eigenbasis.

$$
B:=\left[\begin{array}{ll}
2 & 3 \\
0 & 2
\end{array}\right]
$$

- To find eigenvalues, write down the characteristic polynomial of B :

$$
P_{B}(x)=\operatorname{det}(x \mid d-B)=\operatorname{det}\left[\begin{array}{cc}
x-2 & -3 \\
0 & x-2
\end{array}\right]=(x-2)(x-2) \text {. }
$$

- Find the roots of $P_{B}(x)$:
$x=2$ is the only root
So the only eigenvalue of B is $\lambda=2$.
- Find the 2 -eigenspace of B.
(Recall: the 2-eigenspace of B is $\operatorname{ker}(B-21 d)$

$$
\begin{aligned}
& =\operatorname{ker}\left(\left[\begin{array}{cc}
2-2 & 3 \\
0 & 2-2
\end{array}\right]\right) \\
& \left.=\operatorname{ker}\left(\left[\begin{array}{ll}
0 & 3 \\
0 & 0
\end{array}\right]\right)\right)
\end{aligned}
$$

Row reduce to find solution to $\left[\begin{array}{ll}0 & 3 \\ 0 & 0\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$

$$
\left[\begin{array}{ll|l}
0 & 3 & 0 \\
0 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{ll|l}
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right] \quad \begin{aligned}
& \text { Let } x=t \quad \text { (Since 1stcol has no leading 1) } \\
& y=0
\end{aligned}
$$

$$
\text { General solution of }\left[\begin{array}{ll}
0 & 3 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \text { is }\left[\begin{array}{l}
t \\
0
\end{array}\right]=t\left[\begin{array}{l}
1 \\
0
\end{array}\right] \text {. }
$$

So the 2-eigenspace of B consists of vectors of the form $\left[\begin{array}{l}t \\ 0\end{array}\right]$.
Two vectors of the form $\left[\begin{array}{l}t \\ 0\end{array}\right]$ cannot be linearly independent because they are multiple of each other.

So no eigenbasis exists for B.

- the end -

