Lecture 14b
Rank and Dimension (No row reduce)

Review

So far, we have two main algorithms for finding bases and the dimension of special subspaces.

Finding a basis and dimension for standard subspaces

Subspace	Method to find one basis	Dimension
Image of A	Columns with L1 in REF	rank
2. Span of $\left\{\mathrm{v}_{1}, \ldots \mathrm{v}_{n}\right\}$	$=\operatorname{im}($ concatenation $)$, use \uparrow	\uparrow
3. Kernel of A	Vectors in general solution	width - rank
4. Solutions to HSLE	$=\operatorname{ker}(\operatorname{coeff}$. matrix), use \uparrow	\uparrow
s. λ-eigenspace of A	$=\operatorname{ker}(\mathrm{A}-\lambda \mathrm{Id})$, use \uparrow	\uparrow

In each case, the dimension is easy if we know a certain rank.

Goal

Compute rank and dimension without row reduction

For a fixed matrix A, we have two simple formulas.

$$
\begin{aligned}
\operatorname{dim}(\operatorname{im}(A)) & =\operatorname{rank}(A) \\
\operatorname{dim}(\operatorname{ker}(A)) & =\operatorname{width}(A)-\operatorname{rank}(A)
\end{aligned}
$$

Each formula requires the rank of A...but their sum does not.

The Rank-Nullity Theorem

Let A be any matrix. Then

$$
\underbrace{\operatorname{dim}(\operatorname{im}(A))}_{\operatorname{rank}(A)}+\underbrace{\operatorname{dim}(\operatorname{ker}(A))}_{\text {'nullity' of } A}=\operatorname{width}(A)
$$

Nullity is an archaic word for the dimension of the kernel.

Exercise 5
The image of the following matrix is a plane in \mathbb{R}^{3}.

$$
A:=\left[\begin{array}{ccc}
1 & -1 & 4 \\
2 & 0 & 6 \\
1 & 1 & 2
\end{array}\right]
$$

Find the dimension of the kernel of A.
$\operatorname{im}(A)$ is a plane, so $\operatorname{dim}(\operatorname{im}(A))=2$.
Recall that $\operatorname{dim}(i m(A)$ could be found by row-reducing and counting the number of columns with leading 1, so $(\operatorname{in}$ general $) \operatorname{dim}(\operatorname{im}(A))=\operatorname{rank}(A)$. So $\operatorname{rank}(A)=2$

$$
\begin{aligned}
\text { We've seen (in general) } \left.\begin{array}{rl}
\operatorname{dim}(\operatorname{ker}(A)) & =\text { width }(A)-\operatorname{rank}(A) \\
& =3-2 \\
& =11
\end{array}\right)
\end{aligned}
$$ $\operatorname{dim}(\operatorname{ker}(A))+\operatorname{dim}(\operatorname{im}(A))=\operatorname{width}(A)$

Side note: Geometrically, this means So $\operatorname{dim}(\operatorname{ker}(A))=\operatorname{width}(A)-\operatorname{dim}(\operatorname{im}(A))$ $=3-2=1$. that the set of vectors sent to $\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$ by T_{A} is a line through the origin in $3 D$ space.

Subspaces with dimension 0

What dimensions are possible, and what do they tell us?
Let's consider several special cases.

Definition: The zero subspace

The zero subspace of \mathbb{R}^{n} only contains the zero vector.
Note: this is the only subspace with finitely many elements.

- If there are more than just one element in a subspace w,
there must be infinitely many elements in ω.
Fact/Definition (The subspace of dimension 0)
The only 0 dimensional subspace of \mathbb{R}^{n} is the zero subspace.

Fact (Matrices of rank 0)

The only $m \times n$ matrix of rank 0 is the zero matrix.

```
- If an REF matrix has no leading 1, it's the zero matrix
- A nonzero matrix cannot be turned into the zero matrix using
    elementary row operations.
```


Subspaces with maximum dimension

We can also consider the case of maximum dimension.
Recall Fact: A bound on dimension of subspaces
A subspace of \mathbb{R}^{n} has dimension at most n.
(A basis for a subspace of \mathbb{R}^{n} has n or fewer vectors)

Fact (The subspace of maximum dimension)

The only n dimensional subspace of \mathbb{R}^{n} is all of \mathbb{R}^{n}.

For

example, if a subspace ω of \mathbb{R}^{5} has dimension 5,
then ω must be the entire $\mathbb{R}^{5}\left(\omega=\mathbb{R}^{5}\right)$.
Matrices of maximal rank aren't unique, e.g. any invertible matrix has largest possible rank.

Subspaces with dimension 1

Fact (Subspaces of dimension 1)

A subspace is 1 dimensional if it consists of multiples of a non-zero vector (Geometrically, a line through the origin in n dimensional space)

Fact (Matrices of rank 1)

A non-zero matrix has rank 1 if and only if all the columns are multiples of each other.

$$
\text { (Equivalently, a non-zero matrix has rank } 1 \text { iff all the rows are multiples of each } \text { other) }
$$

Example

$\begin{gathered}\text { three times } R_{1} \\ -1\end{gathered} \operatorname{rank}\left[\begin{array}{ccc}1 & 2 & -1 \\ 3 & 6 & -3 \\ -1 & -2 & -1\end{array}\right]=1$

$$
\text { If we were to do row reduction, we would get }\left[\begin{array}{ccc}
1 & 2 & -1 \\
3 & 6 & -1 \\
-1 & -2 & -1
\end{array}\right] \cdots\left[\begin{array}{ccc}
1 & 2 & -1 \\
0 & 0 \\
0 & 0
\end{array}\right]
$$

Exercise 6
Let $\quad A:=\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right]$
(a) Find the rank of the following matrix. (b) What is $\operatorname{dim}(\operatorname{im}(A))$?
(c) What is the dimension of the kernel of A ?
[Let's practice applying the methods from this lecture -no row reduce]
(a) Possible rank for a 2×2 matrix:
$2 \operatorname{rank}(A)=2$
A is not The rows of A the zero are not matrix multiples of each other
\# of columns of REF
(b) $\operatorname{dim}(\operatorname{im}(A))=\operatorname{rank}(A)=2$ with leading 1
(c)

$$
\begin{aligned}
\operatorname{dim}(\operatorname{ker}(A)) & =\operatorname{width}(A)-\operatorname{rank}(A) \\
& =2-2=0
\end{aligned}
$$

Think/remember: \# of columns of REF with no leading 1
Note: This means $\operatorname{ker}(A)$ is the zero subspace, $\operatorname{ker}(A)=\left\{\left[\begin{array}{l}0 \\ 0\end{array}\right]\right\}$. So the only vector sent to $\left[\begin{array}{l}0 \\ 0\end{array}\right]$ by T_{A} is $\left[\begin{array}{l}0 \\ 0\end{array}\right]$.

Exercise 7
Let $\quad B:=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 2 \\ 1 & 1 & 3\end{array}\right]$
(a) Find the rank of B.
(b) What is the dimension of the image of B ?
(c) What is the dimension of the kernel of B ?
(a) Possible ranks:
B is not
The list and ind the zero matrix

So $\operatorname{rank}(B)=2$
columns are multiple of each other, but the 3rd column is not a multiple of the list col.

2
The 1st and 2 nd columns are equal. Recall this means $\overline{\operatorname{det}}(B)=0$. So B is not invertible. So $\operatorname{rank}(B)$ is not maximum.
(b) $\operatorname{dim}(\operatorname{im}(B))=\operatorname{rank}(B)=2$
(c)

$$
\begin{aligned}
\operatorname{dim}(\operatorname{ker}(B)) & =\text { width }(B)-\operatorname{rank}(B) \\
& =3-2=1
\end{aligned}
$$

This means $\operatorname{ker}(B)$ is a line through the origin in 3D space.

We can also relate dimension to containment between subspaces.
Theorem 3: Subspaces contained in other subspaces
Let V and W be subspaces of \mathbb{R}^{n}.
Think of dimension as
(a) - If V is contained in W, then $\operatorname{dim}(V) \leq \operatorname{dim}(W)$.
a measure of how "big'"
(b) - If V is contained in W and $\operatorname{dim}(V)=\operatorname{dim}(W)$, then $V=W$.

Example Suppose W is a plane through the origin in \mathbb{R}^{3}

- If V is a subspace contained in W with dimension 2, then V must be the entire plane W. $b y(b)$)
- Since W has dimension 2, if V is contained in ω, then V can have dimension 0,1 , or $2($ by $(a))$.
- If V has dimension 1, then V must be some line in W through the origin.
-If V has dimension O, then $V=\left\{\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]\right\}$, the zero subspace of \mathbb{R}^{3}.

Exercise 8

Let A and B be two matrices such that the product $A B$ is defined.
(1) Show that $\operatorname{im}(A B)$ is contained in $\operatorname{im}(A)$.
(2) Show that $\operatorname{rank}(A B) \leq \operatorname{rank}(A)$.
(3) Show that $\operatorname{rank}(A B) \leq \operatorname{rank}(B)$. Hint: Is there a trick to reverse the order of multiplication without changing the rank? $I^{\prime} \|$ use transpose, since $\operatorname{rank}(M)=\operatorname{rank}(M T)$ and $(C D)^{\top}=D^{\top} C^{\top}$

This shows the following general principle, which is virtually impossible to show from the leading 1 s definition.

Rank and matrix multiplication

$$
\operatorname{rank}(\mathrm{AB}) \leq \min (\operatorname{rank}(\mathrm{A}), \operatorname{rank}(\mathrm{B}))
$$

Exercise 8

Let A and B be two matrices such that the product $A B$ is defined.
(1) Show that $\operatorname{im}(A B)$ is contained in $\operatorname{im}(A)$.

$$
\begin{aligned}
& \text { We want to show imp }(A B) \text { sim (A) } \\
& \text { ("C" means: "contained in" or "is a subset of"] } \\
& \text { Let } v \text { be in in }(A B) \text {; that is, } \\
& \text { there is some } w \text { such that } \\
& \qquad v=(A B) w . \\
& =A(B w) \\
& \text { Therefore, } v \text { is in imp }(A) \text {. } \\
& \text { Since this computation works for all } v \text { in in (AB), } \\
& \text { we can say that in (AB) is in in }(A) . \text { the end of (1) ? }
\end{aligned}
$$

Exercise 8

Let A and B be two matrices such that the product $A B$ is defined.
(1) Show that $\operatorname{im}(A B)$ is contained in $\operatorname{im}(A)$.
[2 Show that $\operatorname{rank}(A B) \leq \operatorname{rank}(A)$.] will show (2)

$$
\begin{aligned}
& \text { Since imp }(A B) \text { is contained in im }(A) \text { by part (1), } \\
& \text { Theorem } 3 \text { tells us that } \\
& \underbrace{\operatorname{dim}(i m(A B))}_{\operatorname{rank}(A B)} \leq \underbrace{\operatorname{dim}(i m(A))}_{\operatorname{rank}(A)} \text {. }
\end{aligned}
$$

Exercise 8

Let A and B be two matrices such that the product $A B$ is defined.
(1) Show that $\operatorname{im}(A B)$ is contained in $\operatorname{im}(A)$.
(2) Show that $\operatorname{rank}(A B) \leq \operatorname{rank}(A)$.
(3) Show that $\operatorname{rank}(A B) \leq \operatorname{rank}(B)$. Hint: Is there a trick to reverse the order of multiplication without changing the rank? I'\| use transpose, since $\operatorname{rank}(M)=\operatorname{rank}\left(M^{\top}\right)$ and $(C D)^{\top}=D^{\top} C^{\top}$ -
the end of
Recall:
 rank of its transpose $\operatorname{rank}(M)=\operatorname{rank}\left(M^{\top}\right)$
bo $(C D)^{\top}=D^{\top} C^{\top}$. $\operatorname{rank}(A B) \stackrel{(a)}{=} \operatorname{rank}\left((A B)^{T}\right)$
$\stackrel{(b)}{=} \operatorname{rank}\left(B^{\top} A^{\top}\right)$
$\sum \operatorname{rank}\left(B^{\top}\right)$ by part
$\stackrel{(a)}{=} \operatorname{rank}(B)$
So $\operatorname{rank}(A B) \leq \operatorname{rank}(B)$.

