Lecture 14a

Basis Algorithms for the kernel of a matrix

Definition (Subspaces of \mathbb{R}^n)

A subspace of \mathbb{R}^n is a non-empty subset of \mathbb{R}^n which is closed under addition and scalar multiplication.

Subspaces generalize linear objects like lines and planes (to higher dimension)

Many sets we've studied are subspaces: solution sets to homogeneous linear systems, eigenspaces, kernels, images, spans.

Definition (Bases for a subspaces)

A basis S of a subspace V is a list of vectors such that every vector in V can be written uniquely as a linear combination of the vectors in S.

Useful for efficiently encoding subspaces in a finite list of vectors.

Slide 2/12

Gives us the notion of dimension

Special sets in a subspace

Slide 3/12

Review

Review

Recall: Dimension and number of vectors

• Every basis for a V contains exactly $\dim(V)$ -many vectors.

Theorem 7 from the last lecture:

- Every spanning set for V contains at least dim(V)-many vectors, and equality implies it is a basis.
- Every linearly independent set in V contains at most dim(V)-many vectors, and equality implies it is a basis.

Review

Recall Theorem 7 from the last lecture (The '2 out of 3' rule)

To show a set of vectors in a subspace V is a basis, you only need to check 2 of the following 3:

- The set is linearly independent.
- The set is a spanning set for V.
- The number of vectors in the set equals $\dim(V)$.

Exercise 1

Review Extra Exercise 10 from Lec 136

Slide 6/12

Next up

Computing a basis for the kernel of A (i.e. solutions to Av = 0).

Exercise 2

a Find the general solution to the following matrix equation.

$$\underbrace{\begin{bmatrix} 2 & -2 & -4 & 4 \\ -1 & 1 & 3 & 2 \end{bmatrix}}_{A} \begin{bmatrix} w \\ x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

(b) Use the general solution to find a basis for the subspace of solutions to Ax = 0.

A general solution is a description of all solutions using parameters.

Slide 7/12

• Find the general solution to the following matrix equation.

$$\begin{bmatrix} 2 & -2 & -4 & 4 \\ -1 & 1 & 3 & 2 \end{bmatrix} \begin{bmatrix} w \\ x \\ y \\ z \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ z \\ z \end{bmatrix}$$
 (set the 2nd and 4th var x and 2 to parameters

@Find all solutions by row reducing

$$\begin{bmatrix} 2 & -2 & -4 & 4 & 0 \\ -1 & 1 & 3 & 2 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & -2 & 2 & 0 \\ -1 & 1 & 3 & 2 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & -2 & 2 & 0 \\ 0 & 0 & 0 & 4 & 0 \end{bmatrix}$$

R_1 $\mapsto \frac{1}{2}R_1$

R_2 $\mapsto R_1 + R_2$

REF

No leading 1 on the 2nd and 4th col:

Let $x = t$

Let $z = s$

Back substitution:

$$l \cdot \omega - l \cdot x - 2 \cdot y + 2 \cdot z = 0 \Rightarrow \omega - t - 2 (-4s) + 2s = 0 \Rightarrow \omega - t + 10s = 0$$

 $l \cdot y + 4z = 0 \Rightarrow y + 4s = 0 \Rightarrow y = -4s$ $\omega = t - 10s$
So the general solution is $\begin{pmatrix} t - 10s \\ t \\ -4s \\ s \end{pmatrix}$ for t, s in R.

() Use the general solution to find a basis for the subspace of solutions to Ax = 0.

Comments We just showed that every element in
$$\ker(A)$$
 is of the form

$$\begin{bmatrix} t - 10 \ s \\ -4 \ s \\ S \end{bmatrix} = \begin{bmatrix} t \\ 0 \\ 0 \\ -4 \end{bmatrix} = t \begin{bmatrix} 1 \\ 1 \\ 0 \\ -4 \\ S \end{bmatrix} = t \begin{bmatrix} 1 \\ 1 \\ 0 \\ -4 \\ 0 \\ -4 \\ 1 \end{bmatrix}$$
"separate t
and s"

$$A \text{ linear combination of concrete vectors
and s"
$$with t \text{ and } s \text{ as coefficients}$$
• So every element in $\ker(A)$ is a linear combination of $\left[\begin{bmatrix} 1 \\ 0 \\ -4 \\ 1 \\ -4 \\ 1 \end{bmatrix} \right]$.
• By def of spanning set, the set $\left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \\ -4 \\ 1 \end{bmatrix} \right\}^{T}$ is a spanning set for $\ker(A)$.
• To be a basis of $\ker(A)$, a set needs to be both

$$-a \text{ spanning set for $\ker(A)$

$$-a \text{ linearly independent set}$$
• Check whether $\left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} -10 \\ 0 \\ -4 \\ 1 \end{bmatrix} \right\}$ is linearly independent:$$$$

$$\begin{array}{c} \text{Row reduce} \begin{bmatrix} 1 & +b & 0 \\ 0 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 1 & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & +b & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & +b & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & +b & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{} \begin{array}{c} \text{Every column} \\ (\text{left of "I"}) \\ \text{has a leading l,} \\ \text{so the vectors} \\ \text{are linearly} \\ \text{R_3} \mapsto \frac{1}{4}\text{R_3} \quad \text{R_3} \mapsto \text{R_2}\text{H_3} \\ \text{R_4} \mapsto -\text{R_2}+\text{R_4} \end{array}$$

$$\begin{array}{c} \text{red of explanation} \\ \text{So} \quad \left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} -10 \\ 4 \\ 1 \end{bmatrix} \right\} \text{ is a basis for } \text{ker}(A) \end{array} \leftarrow \begin{array}{c} \text{Short encoder to} \\ \text{Ex 2(b)} \end{array}$$

-

~

Algorithm 1 (basis for kernel): Find one basis for the kernel of A

- 1 Put A into REF.
- 2 Write a general solution to Ax = 0, introducing a parameter for each column of the REF without a leading 1.
- **3** Rewrite the general solution as a linear combination whose coefficients are the parameters.
- Then vectors in the linear combination form a basis for ker(A).

Why does this work?

It's a spanning set since every solution is a linear combination. It's linearly independent since each vector is non-zero in a new row

This is not the only basis for the kernel of A!

Slide 8/12

$$\mathsf{A} := \begin{bmatrix} 1 & 1 & 1 & 2 \\ 1 & 1 & 0 & -1 \\ 0 & 0 & 1 & 3 \end{bmatrix}$$

- (a) Find a basis for ker(A) and the dimension of ker(A).
- **b** Check that the following set of vectors is a basis for ker(A).

$$\left\{ \begin{bmatrix} 0\\1\\-3\\1 \end{bmatrix}, \begin{bmatrix} 1\\-1\\0\\0 \end{bmatrix} \right\}$$

Pause video & try on your own (Use Algorithm 1 and follow Exercise 2) Slide 9/12

Following Algorithm 1 $A := \begin{vmatrix} 1 & 1 & 1 & 2 \\ 1 & 1 & 0 & -1 \\ 0 & 0 & 1 & 3 \end{vmatrix}$ • Find a basis for ker(A) and the dimension of ker(A). Step 1: Row reduce $R_2 \mapsto R_2 + R_2$ R, HY-RITR, R2 - R2 REF step 2: Find general solution (Choose your own variable names $\begin{pmatrix} X_1 \\ X_2 \\ X_3 \\ X_4 \end{pmatrix}$ or $\begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix}$) Let $X_2 = t$, $X_4 = s$. Back substitution: $X_{1} + X_{2} + X_{3} + 2 \times_{q} = 0 \Rightarrow X_{1} + t + (-3s) + 2s = 0 \Rightarrow X_{1} + t - s = 0$ $X_{3} + 3 \times_{q} = 0 \Rightarrow X_{3} + 3s = 0 \Rightarrow X_{3} = -t + s$ $X_{3} + 3 \times_{q} = 0 \Rightarrow X_{3} + 3s = 0 \Rightarrow X_{3} = -3s$ General solution is t -35 Step 3: Write general solution as linear combination with parameters as coefficients - the end of EX3(a) - dim(ker(A)) = 2.

Exercise 3 **(b)** Check that the following set of vectors is a basis for ker(A). $\mathsf{A} := \begin{bmatrix} 1 & 1 & 1 & 2 \\ 1 & 1 & 0 & -1 \\ 0 & 0 & 1 & 3 \end{bmatrix}$ Since we already found dim (ker (A)) = 2 from part (a), let's apply the "2 out of 3 rule". First, we have to check that L is a subset of Ker (A): $\begin{bmatrix} 1 & 1 & 1 & 2 \\ 1 & 1 & 0 & -1 \\ 0 & 0 & 1 & 3 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ -3 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \sqrt{s_0} \begin{bmatrix} 0 \\ 1 \\ -3 \\ 1 \end{bmatrix} \text{ is in } \ker(A)$ So L is contained in $\ker(A)$. $\begin{bmatrix} 1 & 1 & 2 \\ 1 & 1 & 0 & -1 \\ 0 & 0 & 1 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \sqrt{s_0} \begin{bmatrix} 1 \\ -1 \\ 0 \\ 0 \end{bmatrix} \text{ is in } \ker(A)$ Next, since we've seen that dim(ker(A)) = 2 and L has two vectors, we just need to check that L spans Ker(A) L is linearly independent. (I'll check this) $\begin{bmatrix} 0 & 1 & 0 \\ 1 & -1 & 0 \\ -3 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ -3 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ $\begin{array}{cccc} R_2 \mapsto -R_1 + R_2 & R_2 \mapsto -R_2 \\ R_3 \mapsto 3R_1 + R_3 & R_4 \mapsto R_2 + R_4 & l & got & an REF matrix \\ \end{array}$ $R_1 \leftrightarrow R_4$ $R_2 \mapsto -R_1 + R_2$ with a leading 1 in each column left of "1" So L is linearly independent. Combined with the fact that L is a subset of Ker(A), L has dim (ker(A)) - many vectors, this chows that Lis a basis for ker (A). ~ end of Ex3(b)~

If we can find a basis, we can find the dimension.

dimension of ker(A) $\stackrel{\texttt{def}}{=} \#$ of vectors in basis $\stackrel{\texttt{Alg}}{=} \#$ of parameters in general solution = # columns in REF without a leading 1

That is...

We have five "standard" types of subsets which we know are always subspaces.

We now have methods to find a basis and the dimension of each of our general constructions of a subspace!

Finding a basis and dimension for standard subspaces

	Subspace	Method to find one basis	Dimension
Algo 5	^{Le} Image of A	Columns with L1 in REF	rank
Lec 136	$_2$, Span of $\{v_1, v_n\}$	$= \mathrm{im}(concatenation)$, use \uparrow	\uparrow
New.	Kernel of A	Vectors in general solution	width $- \operatorname{rank}$
in this	^{4,} Solutions to HSLE	$= \ker(coeff. matrix)$, use \uparrow	\uparrow
lecture	5. λ -eigenspace of A	$= \ker(A - \lambda Id), \text{ use } \uparrow$	\uparrow

In each case, the dimension is easy if we know a certain rank.

For a general subspace you encounter in the wild which is not one of these five types, we usually don't have an easy algorithm for finding a basis. Slide 11/12

Slide 12/12

Algorithm 1 (Find a basis for the kernel of a matrix) says we just need to solve for $\begin{bmatrix} 0 & 2 & 4 \\ 0 & -1 & -2 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ write the solutions as linear combinations of set \$ of vectors - the set \$ will be a basis for W. Row reduce Note: If there $\begin{bmatrix} 0 & 2 & 4 & 0 \\ 0 & -1 & -2 & 0 \\ 0 & 1 & 2 & 0 \end{bmatrix} \longrightarrow \begin{bmatrix} 0 & 1 & 2 & 0 \\ 0 & -1 & -2 & 0 \\ 0 & 1 & 2 & 0 \end{bmatrix} \longrightarrow \begin{bmatrix} 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{\text{Let } x = t}_{\text{Let } z = r}$ had been K number of columns without a RIHY-RI leading 1, $R_2 \mapsto R_1 + R_2$ 1st and 3rd columns dím(w)=k $R_3 \mapsto -R_1 + R_3$ have no leading 1 Back substitution: $y + 2z = 0 \implies y + 2r = 0 \implies y = -2r$ General solution = $\begin{pmatrix} t \\ -2r \\ r \end{pmatrix} = \begin{pmatrix} t \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ -2r \\ r \end{pmatrix} = t \begin{vmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + r \begin{vmatrix} -2 \\ -2 \\ 1 \end{pmatrix} .$ a) A basis for W is $\begin{cases} 1 \\ 0 \\ -2 \end{cases}$. So $\dim(W) = 2$. Let's do a sanity check. Check that at least $\begin{pmatrix} 0 \\ -2 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ -2 \\ 1 \end{pmatrix}$ is a subset of the 2-eigenspace of M. Check: $M \begin{bmatrix} 0 \\ 0 \end{bmatrix} \stackrel{?}{=} 2 \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ and $M \begin{bmatrix} 0 \\ -2 \\ 1 \end{bmatrix} = 2 \begin{bmatrix} 0 \\ -2 \\ 0 \end{bmatrix}$ $\begin{bmatrix} 2 & 2 & 4 \\ 0 & 1 & -2 \\ 0 & 1 & 4 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix} = 2 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \checkmark$ So at least our set of two vectors is a subset of W. $\begin{bmatrix} 2 & 2 & 4 \\ 0 & 1 & -2 \\ 0 & 1 & 4 \end{bmatrix} \begin{bmatrix} 0 \\ -2 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ -4 \\ 2 \end{bmatrix} = 2 \begin{bmatrix} 0 \\ -2 \\ 1 \end{bmatrix} \checkmark$