Lecture 13b
Bases (Basis computations and dimensions)

Review

Definition Basis (plural: bases)

A basis for a subspace V is a linearly independent spanning set of V.
A subspace can have many different bases, but ...

Theorem 4 (The Invariance Theorem)

Any two bases for a subspace contain the same number of vectors.

Definition Dimension

The dimension of a subspace V is the number of vectors in any basis of V.

Goal for Lecture 13b

How to quickly find a basis for various types of subspaces (and compute the dimension of a subspace).

Fact (Bases from spanning sets)

Every spanning set for a subspace V contains a basis for V.
That is, you can make a basis by throwing out enough elements.

Example

$$
\text { A spanning set of } \mathbb{R}^{2}:\left\{\left[\begin{array}{l}
1 \\
0
\end{array}\right],\left[\begin{array}{c}
1 \\
-1
\end{array}\right],\left[\begin{array}{l}
0 \\
2
\end{array}\right],\left[\begin{array}{l}
5 \\
4
\end{array}\right]\right\}
$$

One subset that is a basis: $\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{c}1 \\ -1\end{array}\right]\right\}$
Another subset that is a basis: $\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 2\end{array}\right]\right\}$

Spanning sets and dimension

A spanning set for V must contain at least $\operatorname{dim}(V)$-many vectors.

The previous idea is pretty slow; we can speed it up.

Algorithm 5: Finding a basis from a spanning set

Let $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ be a spanning set for V.

- Concatenate the vectors into a matrix A.
- Put A into REF, call it B.
- Check which columns of B contain a leading 1
- Keep the vectors in the original set corresponding to only those columns.

The result is a basis for V.
Exercise 6 (Apply Algorithm 5)
Let

$$
V:=\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
4 \\
7
\end{array}\right],\left[\begin{array}{l}
2 \\
5 \\
8
\end{array}\right],\left[\begin{array}{l}
3 \\
6 \\
9
\end{array}\right]\right\}
$$

Find a basis for V.

Exercise 6 (Apply Algorithm 5)
Let

$$
V: \stackrel{\text { def }}{=} \operatorname{span}\left\{\left[\begin{array}{l}
1 \\
4 \\
7
\end{array}\right],\left[\begin{array}{l}
2 \\
5 \\
8
\end{array}\right],\left[\begin{array}{l}
3 \\
6 \\
9
\end{array}\right]\right\}
$$

By def, the set

Find a basis for V.
(1 will follow Algorithm 5)
Let $A:=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right]$
concatenate the vectors

$$
\left[\begin{array}{l}
1 \\
4 \\
7
\end{array}\right],\left[\begin{array}{l}
2 \\
5 \\
8
\end{array}\right],\left[\begin{array}{l}
3 \\
6 \\
9
\end{array}\right]
$$

(we row reduce the concatenation)
$\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right] \underset{\substack{\text { Perform elementary row } \\ \text { operations until you get }}}{-}\left[\begin{array}{ccc}1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 0\end{array}\right]$ an REF matrix
The set $\left\{\left[\begin{array}{l}1 \\ 4 \\ 7\end{array}\right],\left[\begin{array}{l}2 \\ 5 \\ 8\end{array}\right]\right\}$ is a basis for V.

We get an REF matrix whose 1st and ind columns have leading 1 s , not the 3 rd column.

Reminder: This means the dimension of V is 2 .

Recall fact: Span equals image of concatenation

For example,

$$
\operatorname{span}\left\{\left[\begin{array}{c}
1 \\
4 \\
7 \\
-1
\end{array}\right],\left[\begin{array}{l}
2 \\
5 \\
8 \\
0
\end{array}\right],\left[\begin{array}{l}
3 \\
6 \\
9 \\
2
\end{array}\right]\right\}=\operatorname{im}\left(\left[\begin{array}{ccc}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9 \\
-1 & 0 & 2
\end{array}\right]\right)
$$

We can use this to reformulate the last argument.
Algorithm 5, rephrased: Finding a basis for an image
Let A be a matrix. One basis for $\operatorname{im}(A)$ is given by the columns of A in which an REF of A contains a leading 1.

This is just one of many bases for $\operatorname{im}(A)$!

Algorithm 5, rephrased: Finding a basis for an image
Let A be a matrix. One basis for $\operatorname{im}(A)$ is given by the columns of A in which an REF of A contains a leading 1.

Exercise 7(a) (Apply Algorithm 5, rephrased)
Let

$$
M:=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 2 & 3 & 4 \\
1 & 3 & 5 & 7 \\
1 & 4 & 7 & 10
\end{array}\right]
$$

Find a basis for $\operatorname{im}(M)$, the image of M.
Step 1: Row reduce M until we get an REF matrix.

- Algorithm 5 tells us how to produce one basis for im(A): The number of vectors in this basis is the number of leading 1 s in an REF of A, that is, the rank of A.
- If we know the number of vectors in one basis for im(A), we know the number of vectors in every basis, that is, the dimension. So ...

Theorem 6: Dimension of the image of a matrix

The dimension of the image of A is equal to the rank of A.
This is often used as the definition of $\operatorname{rank}(A)$.

Theorem 6: Dimension of the image of a matrix
The dimension of the image of A is equal to the rank of A.

Exercise 7(b) (Apply Theorem 6)
Find the dimension of the image of the following matrix. (Pretend you haven't seen the previous slide.)

$$
M:=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 2 & 3 & 4 \\
1 & 3 & 5 & 7 \\
1 & 4 & 7 & 10
\end{array}\right]
$$

(We need to compute the rank of M.)
Compute rank by first finding an REF matrix.

In Algorithm 5, we start with a spanning set S. Then construct a basis contained in S (by "keeping only the columns with a leading 1 in the REF").

Fact (Bases from linearly independent set)

Every linearly independent subset of V is contained in a basis for V.
Idea: We can start with a linearly independent set. If it's not already a basis, construct a basis by adding vectors which would turn it into a basis.

Example

A linearly independent set, $S:\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]\right\}$, a subset of \mathbb{R}^{3}
A basis for \mathbb{R}^{3} containing $S:\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]\right\}$
Another basis for \mathbb{R}^{3} containing $S:\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}7 \\ 5 \\ 3\end{array}\right]\right\}$
Unlike Algorithm 5, we have no general algorithm for this. But it is still a useful fact.

Since every linearly independent subset ${ }^{\prime} V$ is contained in some basis of V, we can say ...

Fact: Linearly independent sets and dimension

A linearly independent set in V has at most $\operatorname{dim}(V)$-many vectors.

Example

The following set cannot be linearly independent, as $\operatorname{dim}\left(\mathbb{R}^{3}\right)=3$.

$$
\left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right],\left[\begin{array}{c}
3 \\
-2 \\
3
\end{array}\right]\right\}
$$

Fact: A bound on dimension of subspaces
A subspace of \mathbb{R}^{n} must have dimension at most n.
Reason: A basis for a subspace of \mathbb{R}^{n} is linearly independent in \mathbb{R}^{n}.

Summary: Bounds on special sets

$$
\#(\text { vectors in a LI set in } V) \leq \operatorname{dim}(V) \leq \#(\text { vectors in a } \underset{\substack{\text { Speanearly } \\ \text { independent } \\ \text { set }}}{\text { SS for }} V)
$$

We can say something stronger if there is equality.

Theorem 7 (Special sets of just the right size)

- If a spanning set for V has $\operatorname{dim}(V)$-many vectors (the smallest size possible for a spanning set), then it must be a basis.
- If a linearly independent subset of V has $\operatorname{dim}(V)$-many vectors (the largest size possible for a linearly independent subset), then it must be a basis.

Why?

Because you can't delete/add vectors and still have $\operatorname{dim}(V)$-many.

I find it useful to restate this in the following way.

Theorem 7, restated (The '2 out of 3 Rule' for checking a basis)

Let $v_{1}, v_{2}, \ldots, v_{k}$ be elements in V. If any 2 of the following 3 properties are true, then the 3 rd one is automatically true.

- $v_{1}, v_{2}, \ldots, v_{k}$ is a spanning set.
- $v_{1}, v_{2}, \ldots, v_{k}$ is linearly independent.
- The dimension of V is k.

So, if any 2 of these are true, then $v_{1}, v_{2}, \ldots, v_{k}$ is a basis for V.
If you know $\operatorname{dim}(V)$ and you want to check if a subset S of V is a basis...

- If S has the wrong number of vectors, it's not basis.
- If S has the right number of vectors, you only need to check one of the two conditions (and one is usually easier).

Let's practice applying the ' 2 out of 3 rule'.

Exercise 8

Let W be the subspace of \mathbb{R}^{3} consisting of vectors whose entries sum to 0 . Let

$$
T:=\left\{\left[\begin{array}{c}
-1 \\
3 \\
-2
\end{array}\right],\left[\begin{array}{c}
2 \\
-1 \\
-1
\end{array}\right]\right\}
$$

We see that the vectors of T are in W. Use the ' 2 out of 3 rule' to check whether the set T is a basis for W.

Exercise 8 solution + Instructor's comments
We check: Both $\left[\begin{array}{c}-1 \\ 3 \\ -2\end{array}\right]$ and $\left[\begin{array}{l}2 \\ -1 \\ -1\end{array}\right]$ are in $W\left(\begin{array}{c}-1+3-2=0 \\ 2-1-1=0\end{array}\right]$.
Recall: In Exercise 1 of Lecture 13a we showed that a set of two vectors is a basis for ω. This means $\operatorname{dim}(\omega)=2$.

Our set $T=\left\{\left[\begin{array}{c}-1 \\ 3 \\ -2\end{array}\right]\left[\begin{array}{c}{[1} \\ -1\end{array}\right]\right\}$ has two vectors (same number as $\operatorname{dim}(\omega)$).
By the "2 out of 3 rule", we only need to check

- Our set is linearly independent we only need to OR check one of themnot both!
- Our set is a spanning set for W

Which one is easier to check? In this case, linear independence is slightly easier to check

Well check that our set T is linearly independent:
(we need to show that the equation $x\left[\begin{array}{c}-1 \\ 3 \\ -2\end{array}\right]+y\left[\begin{array}{c}2 \\ -1 \\ -1\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$, ie. $\left[\begin{array}{cc}-1 & 2 \\ 3 & -1 \\ -2 & -1\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$ has one unique solution, the trivial solution $\left.\begin{array}{l}x=0 \\ y=0\end{array}\right)$
concatenation of the vectors in our set
Row reduce the augmented matrix

$$
\begin{aligned}
{\left[\begin{array}{cc|c}
-1 & 2 & 0 \\
3 & -1 & 0 \\
-2 & -1 & 0
\end{array}\right] }
\end{aligned} \underset{R_{1} \mapsto-R_{1}}{\left[\begin{array}{cc|c}
1 & -2 & 0 \\
3 & -1 & 0 \\
-2 & -1 & 0
\end{array}\right]} \rightarrow \underset{\substack{R_{2} \mapsto-3 R_{1}+R_{2} \\
R_{3} \mapsto 2 R_{1}+R_{3}}}{\left[\begin{array}{cc|c}
1 & -2 & 0 \\
0 & 5 & 0 \\
0 & -5 & 0
\end{array}\right]} \rightarrow \underset{R_{3} \mapsto R_{2}+R_{3}}{\left[\begin{array}{cc|c}
1 & -2 & 0 \\
0 & 5 & 0 \\
0 & 0 & 0
\end{array}\right]} \rightarrow \underset{R_{2} \mapsto \frac{1}{5} R_{2}}{\left[\begin{array}{cc|c}
1 & -2 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]} \underset{R E F}{ }
$$

An REF matrix equivalent to $x\left[\begin{array}{c}-1 \\ 3 \\ -2\end{array}\right]+y\left[\begin{array}{c}2 \\ -1 \\ -1\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$ has a leading one in each column to the left of the vertical line.
$\left(\right.$ So $x\left[\begin{array}{c}-1 \\ 3 \\ -2\end{array}\right]+y\left[\begin{array}{c}2 \\ -1 \\ -1\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$ has one unique solution, the trivial solution $\left.\begin{array}{l}x=0 \\ y=0\end{array}\right)$
This shows that our set $T=\left\{\left[\begin{array}{c}-1 \\ 3 \\ -2\end{array}\right],\left[\begin{array}{c}2 \\ -1 \\ -1\end{array}\right]\right\}$ is linearly independent.
By the "2 out of 3 rule", since T has $\operatorname{dim}(\omega)$-many vectors, our set T is a basis of ω.
(We can deduce that our set is a basis of W without needing to check that it is a spanning set for W!)

- the end of solution + instructor's comments _

Exercise 8

Let W be the subspace of \mathbb{R}^{3} consisting of vectors whose entries sum to 0 . Let

$$
T:=\left\{\left[\begin{array}{c}
-1 \\
3 \\
-2
\end{array}\right],\left[\begin{array}{c}
2 \\
-1 \\
-1
\end{array}\right]\right\}
$$

sample student

HOMEWORK ANSWER

We see that the vectors of T are in W. Use the ' 2 out of 3 rule' to check whether the set T is a basis for W.

We check: Both $\left[\begin{array}{c}-1 \\ 3 \\ -2\end{array}\right]$ and $\left[\begin{array}{c}2 \\ -1 \\ -1\end{array}\right]$ are in $W\left(\begin{array}{c}-1+3-2=0 \\ 2-1-1=0\end{array}\right]$.
In Exercise 1 of Lecture $13 a$ we showed that a set of two vectors
is a basis for ω. This means $\operatorname{dim}(\omega)=2$.

We'll check that our set T is linearly independent:

Row reduce the augmented matrix

$$
\begin{aligned}
& \text { An REF matrix equivalent } \\
& \text { to } x\left[\begin{array}{r}
-1 \\
3 \\
-2
\end{array}\right]+y\left[\begin{array}{r}
2 \\
-1 \\
-1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
& \text { has a leading one } \\
& \text { in each column to } \\
& \text { the left of the } \\
& \text { vertical line. }
\end{aligned}
$$

So, T is linearly independent.

$$
\begin{aligned}
& \text { By the "2 out of } 3 \text { rule", since } T \text { has } \operatorname{dim}(W) \text {-many vectors, } \\
& \text { our set } T \text { is a basis of } W \text {. }
\end{aligned}
$$

Extra Exercises, not recorded
Exercise 9 Suppose a subspace V has a spanning set

$$
S:=\left\{\left[\begin{array}{l}
6 \\
7 \\
8 \\
9
\end{array}\right],\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right],\left[\begin{array}{l}
6 \\
7 \\
8 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
2 \\
3
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
1 \\
1
\end{array}\right],\left[\begin{array}{l}
2 \\
0 \\
1 \\
1
\end{array}\right]\right\}
$$

Find a basis for V (which is contained in S)
Solution
Algorithm 5: Finding a basis from a spanning set
Let $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ be a spanning set for V.

- Concatenate the vectors into a matrix A.
- Put A into REF, call it B.
- Check which columns of B contain a leading 1
- Keep the vectors in the original set corresponding to only those columns.
The result is a basis for V.

Let $A:=\underbrace{\left[\begin{array}{llllll}6 & 1 & 6 & 0 & 0 & 2 \\ 7 & 2 & 7 & 1 & 1 & 0 \\ 8 & 3 & 8 & 2 & 1 & 1 \\ 9 & 4 & 0 & 3 & 1 & 1\end{array}\right]}_{A \text { concatenation of the vectors in } S}$

Column 4 and column 6 of B have no leading 1. So we remove the 4 th and $6^{\text {th }}$ column vectors of A from S

$$
\left\{\left[\begin{array}{l}
6 \\
7 \\
8 \\
9
\end{array}\right],\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right],\left[\begin{array}{l}
6 \\
7 \\
8 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
2 \\
2
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
1 \\
1
\end{array}\right],\left[\begin{array}{c}
2 \\
0 \\
1 \\
1
\end{array}\right]\right\}
$$

$$
\text { So }\left\{\left[\begin{array}{l}
6 \\
7 \\
8 \\
9
\end{array}\right],\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right],\left[\begin{array}{l}
6 \\
7 \\
8 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
1 \\
1
\end{array}\right]\right\}
$$

is a basis for V.
the end

Exercise 10 Suppose W is a subspace and
we know $\operatorname{dim}(\omega)=4$ (Note: this means any basis for

Theorem 7, restated (The '2 out of 3 Rule' for checking a basis)
Let $v_{1}, v_{2}, \ldots, v_{k}$ be elements in V. If any 2 of the following 3 properties are true, then the 3rd one is automatically true.

- $v_{1}, v_{2}, \ldots, v_{k}$ is a spanning set.
- $v_{1}, v_{2}, \ldots, v_{k}$ is linearly independent.
- The dimension of V is k.

So, if any 2 of these are true, then $v_{1}, v_{2}, \ldots, v_{k}$ is a basis for V.

- Check that the number of vectors in T is $\operatorname{dim}(W)$.
- Check that T is a linearly independent set.

That is, check that

$$
\begin{aligned}
& x\left[\begin{array}{l}
6 \\
7 \\
8 \\
9
\end{array}\right]+y\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right]+z\left[\begin{array}{l}
6 \\
7 \\
8 \\
0
\end{array}\right]+w\left[\begin{array}{l}
0 \\
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right] \\
& \text { has one unique solution, } \\
& \text { the trivial solution } \begin{aligned}
x & =0 \\
y & =0
\end{aligned} \\
& \begin{array}{l}
y=0 \\
z=0
\end{array} \\
& \begin{array}{l}
\omega=0 . \\
\omega=0 .
\end{array} \\
& {\left[\begin{array}{llll}
6 & 1 & 6 & 0 \\
7 & 2 & 7 & 1 \\
8 & 3 & 8 & 1 \\
9 & 4 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
w
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]} \\
& {\left[\begin{array}{llll|l}
6 & 1 & 6 & 0 & 0 \\
7 & 2 & 7 & 1 & 0 \\
8 & 3 & 8 & 1 & 0 \\
9 & 4 & 0 & 1 & 0
\end{array}\right] \text { Row reduce } \rightarrow\left[\begin{array}{llll|l}
1 & * & * & * & 0 \\
0 & 1 & * & * & 0 \\
0 & 0 & 1 & * & 0 \\
0 & 0 & 0 & 1 & 0
\end{array}\right]}
\end{aligned}
$$

The REF having a leading 1 in every column to the left of the vertical line means the system has one unique solution.
Hence T is linearly independent.
Since $\operatorname{dim}(\omega)$ is equal to the number of vectors in T and T is linearly independent, the set T is a basis for W,

