

Definition: Basis (plural: bases)

A basis for a subspace V is a linearly independent spanning set of V.

A basis is used to efficiently construct every element in a subspace.

Goldilocks and the three properties

A set of vectors $\{v_1, v_2, ..., v_r\}$ in a subspace V is...

- ...a spanning set for V if every element of V can be written as a linear combination in at least one way (possibly more than one way),
- ...a linearly independent set if every element of V can be written as a linear combination in at most one way (possibly not every element of V is a linear combination of v₁, v₂,..., v_r), and
- ...a basis for V if every element of V can be written as a linear combination in exactly one way.

Slide 2/14

Useful trick: Linear combination = matrix multiplication

Rule 1: Checking the three conditions

Let $v_1, v_2, ..., v_r$ be vectors in a subspace V, and let A be the concatenation of the vectors. Then the set $\{v_1, v_2, ..., v_r\}$ is...

- 1 ...a spanning set for V if, for each b in V, the equation Ax = b is consistent.
- 2 ...linearly independent if, for all b in V, the equation Ax = b has at most one solution; equivalently, A has rank equal to its width (the number of vectors, r).
- **3** ...a basis for V if, for all b in V, the equation Ax = b has a unique solution.

Slide

Let W be the subspace of \mathbb{R}^3 consisting of vectors whose entries sum to 0. Show that $(\begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 2 \end{bmatrix})$

$$S := \left\{ \begin{bmatrix} -1\\ -1\\ 0 \end{bmatrix}, \begin{bmatrix} -0\\ -2 \end{bmatrix}
ight\}$$

is a basis for W.

To answer, we apply Rule 1(3)

Let v_1, v_2 be vectors in a subspace W, and let A be the concatenation of the vectors. Then the set $\{v_1, v_2\}$ is...

• ...a basis for W if, for all b in W, the equation Ax = b has a unique solution.

D First, check that the vectors in S are in the subspace W.
Since
$$1+(-1)+0=0$$
, $\begin{bmatrix} 1\\-1\\0 \end{bmatrix}$ is in W.
Since $2+0+(-2)=0$, $\begin{bmatrix} 2\\0\\-2 \end{bmatrix}$ is also in W.
Slide $4/14$

(a) Let
$$A := \begin{bmatrix} 1 & 2 \\ -1 & 0 \\ 0 & -2 \end{bmatrix}$$
.
(b) Let b be in W. That is,
 $b = \begin{bmatrix} a \\ c \\ d \end{bmatrix}$ for some a, c, d in R such that $a + C + d = 0$
(or $d = -a - c$)
In other words, $b = \begin{bmatrix} c \\ -a - c \end{bmatrix}$ for some a, c, d in R such that $a + C + d = 0$
(or $d = -a - c$)
In other words, $b = \begin{bmatrix} c \\ -a - c \end{bmatrix}$ for some a, c in R.
To court solutions to $A \begin{bmatrix} x \\ y \end{bmatrix} = b$, we first row reduce the augmented matrix.
 $\begin{bmatrix} 1 & 2 & a \\ -1 & 0 & c \\ 0 & -2 & -a - c \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & a \\ 0 & 2 & a + c \\ 0 & -2 & -a - c \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & a \\ 0 & 2 & a + c \\ 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & a \\ 0 & 1 & a + c \\ 0 & 0 & 0 \end{bmatrix}$
R to right column has no leading 1. This means $A \begin{bmatrix} x \\ y \end{bmatrix} = b$ is consistent (has at least one sol).
Each column to the left of the vertical line has leading 1.
This means $A \begin{bmatrix} x \\ y \end{bmatrix} = b$ has one unique solution.
So, for each b in W, the equation $A \begin{bmatrix} x \\ y \end{bmatrix}$ has a unique solution.
Therefore, S is a basis for W.

Reminder

For any n, the set \mathbb{R}^n is a subspace of itself.

Bases for \mathbb{R}^n will be particularly interesting; let's do an example.

Exercise 2

Show that the following set is a basis for \mathbb{R}^3 .

$$S := \left\{ \begin{bmatrix} 2\\0\\1 \end{bmatrix}, \begin{bmatrix} 4\\1\\2 \end{bmatrix}, \begin{bmatrix} 2\\2\\2 \end{bmatrix} \right\}$$

To answer, we apply Rule 1(3)

Let v_1, v_2, v_3 be vectors in a subspace W, and let A be the concatenation of the vectors. Then the set $\{v_1, v_2, v_3\}$ is...

...a basis for W if, for all b in W, the equation Ax = b has a unique solution.

Here W is the entire \mathbb{R}^3 .

Slide 5/14

Let
$$A := \begin{bmatrix} 2 & 4 & 2 \\ 0 & 1 & 2 \\ 1 & 2 & 2 \end{bmatrix}$$
. Concatenation
of vectors
in S
Let b be in \mathbb{R}^{3} ,
our subspace W
that is, $b := \begin{bmatrix} a \\ c \\ d \end{bmatrix}$ for some $a_{1}c_{2}d$ in \mathbb{R} .
We need to count Solutions to $A \begin{bmatrix} x \\ y \\ z \end{bmatrix} = b$.
Row reduce the augmented matrix:
 $\begin{bmatrix} 2 & 4 & 2 \\ 0 \\ 1 & z \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 2 & 1 & 4z \\ 0 & 1 & 2 & c \\ 1 & 2 & 2 & d \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 2 & 1 & 4z \\ 0 & 1 & 2 & c \\ 1 & 2 & 2 & d \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 2 & 1 & 4z \\ 0 & 1 & 2 & c \\ 1 & 2 & 2 & d \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 2 & 1 & 4z \\ 0 & 0 & 1 & 4z \\ 0 & 0 & 1 & 4z \\ 1 & 2 & 2 & d \end{bmatrix}$.
We have a leading 1 in every column to the left of the vertical line
and no leading 1 in the right-mast column.
So $A \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} a \\ c \\ d \end{bmatrix}$ has one unique solution.
There fore, the vectors in S form a basis for \mathbb{R}^{3} .

Rule 1 for \mathbb{R}^n : Checking the three conditions using rank

Let $v_1, v_2, ..., v_m$ be vectors in \mathbb{R}^n , and let A be the concatenation of the vectors. Then the set $\{v_1, v_2, ..., v_m\}$ is...

...a spanning set for Rⁿ if rank(A) = height(A).
Why? Because for Ax = b to be consistent I would need the augmented matrix [A|b] to have an REF with a leading 1 in every row (on the left of the vertical line). Otherwise I will be able to find a vecor b where the REF will have a leading 1 in the right column.

...linearly independent if rank(A) = width(A).
 (From the last lecture)

• ... a basis for \mathbb{R}^n if rank(A) = height(A) = width(A).

These conditions only work for bases of the subspace \mathbb{R}^n (as a subspace of itself), not other subspaces of \mathbb{R}^n !

Slide 6/14

Rule 1 for \mathbb{R}^n : Rephrased in terms of rank

Let $v_1, v_2, ..., v_m$ be vectors in \mathbb{R}^n , and let A be the concatenation of the vectors. Then the set $S := \{v_1, v_2, ..., v_m\}$ is...

• ... a basis for \mathbb{R}^n if $\operatorname{rank}(A) = \operatorname{height}(A) = \operatorname{width}(A)$.

The height of A is the height of the vectors in S. The vectors in S are in \mathbb{R}^n , so height(A) = n.

Alternative solution to Exercise 2 (Using "Rule 1 for \mathbb{R}^{n} "):

- A concatenation A of the three vectors in S is a 3×3 matrix.
- Compute the determinant of A, get a nonzero number, and conclude A is invertible. Hence rank(A) = 3.
- Since rank(A) = 3 is equal to the width and height of A, "Rule 1 for Rⁿ" says that S is a basis for R³.

This condition only work for bases of the subspace \mathbb{R}^n (as a subspace of itself), not other subspaces of \mathbb{R}^n !

Slide 7/14

"Rule 1 for \mathbb{R}^{n} " says ...

Theorem 2 (Rank and bases for $\mathbb{R}^n)$

A set of vectors in \mathbb{R}^n is basis of \mathbb{R}^n if its concatenation A has rank *n*.

We've seen: the rank of an $n \times n$ matrix is n if and only if it is invertible!

Theorem 3 (Invertibility and bases for \mathbb{R}^n)

The columns of an $n \times n$ -matrix form a basis for \mathbb{R}^n if and only if the matrix is invertible.

Alternative solution to Exercise 2 (using Thereom 3):

- A concatentation A of the three vectors in S is a 3×3 matrix.
- Compute the determinant of A, get a nonzero number, and conclude A is invertible. By Theorem 3, the vectors in S form a basis for \mathbb{R}^3 .

These theorems only work for bases of the subspace \mathbb{R}^n (as a subspace of itself), not other subspaces of \mathbb{R}^n !

Can we apply Theorem 2 to write an alternative solution to Exercise 1? NO or Theorem 3 Slide 8/

Show that the standard basis vectors in \mathbb{R}^3 are a basis for \mathbb{R}^3 .

The standard basis vectors in \mathbb{R}^3 are $e_1 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$, $e_2 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$, $e_3 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ We will apply Thm 3. First check if the concatenation $\begin{bmatrix} e_1 & e_2 & e_3 \end{bmatrix}$ is invertible. The concatenation is $Id_{3x3} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$. We know Id_{3x3} is invertible (its inverse is itself). Since the concatenation $\begin{pmatrix} e_1 & e_2 & e_3 \\ I & I & I \end{pmatrix} = Id_{3x3}$ is invertible, Thm 3 tells us that {e1, c2, e3} form a basis for R3. The set of standard basis vectors is also called the standard basis for IR"

The standard basis vectors in \mathbb{R}^n always form a basis for \mathbb{R}^n .

Slide 9/14

If the columns of A are a basis of \mathbb{R}^n , then the columns of A^{\top} form a basis of \mathbb{R}^n .

Suppose the columns of A form a basis of
$$\mathbb{R}^n$$
.
Then A must be an $n \times n$ matrix by "Rule 1 for \mathbb{R}^n " (height (A) = width(A)).
Thm 3 says A must be invertible. So det (A) $\neq 0$. (Note: det(A) is
the know that det (A^T) = det (A) $\neq 0$. So A^T is invertible.
By Thom 3, the set of columns of A^T is a basis for \mathbb{R}^n .

Slide 10/14

Because $\operatorname{height}(A) = \operatorname{width}(A)$, we can also observe that...

The Invariance Theorem for \mathbb{R}^n

Every basis for \mathbb{R}^n must have *n*-many vectors.

Example:

- ▶ If you are given set of three vectors in \mathbb{R}^4 , then you can immediately say that the set is not a basis for \mathbb{R}^4 . (Too few)
- ▶ If you are given set of five vectors in \mathbb{R}^4 , then you can immediately say that the set is not a basis for \mathbb{R}^4 . Crop many to be linearly independent)
- ► If you are given set of four vectors in R⁴, then you need to do more computation to determine whether it is a basis for R⁴. Correct # of vectors. Need to do computation

Example: Several bases for \mathbb{R}^3

$$\left\{ \begin{bmatrix} 1\\0\\1 \end{bmatrix}, \begin{bmatrix} 2\\1\\0 \end{bmatrix}, \begin{bmatrix} 3\\2\\1 \end{bmatrix} \right\} \quad \left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\} \quad \left\{ \begin{bmatrix} 1\\9\\5 \end{bmatrix}, \begin{bmatrix} 3\\6\\5 \end{bmatrix}, \begin{bmatrix} 7\\3\\5 \end{bmatrix} \right\}$$

This is a special case of a deep property of bases.

Slide 11/14

Theorem 4 (The Invariance Theorem)

Any two bases for a subspace contain the same number of vectors.

This number is extremely useful, so we give it a name.

Definition: Dimension

The dimension of a subspace V is the number of vectors in any basis of V.

Examples

- dim $(\mathbb{R}^3) = 3$.
- Let W be the subspace of 3-vectors whose entries sum to 0. Then dim(W) = 2.
- Let V be the subspace of 3-vectors whose entries are the same. Then $\dim(V) = 1$. (Lecture 12b)

Slide 12/14

The algebraic definition of <u>dimension</u> is meant to generalize the notion of dimension in 3D or lower dimension.

Relation to geometry

This definition coincides with the geometric notion of dimension!

- The origin in \mathbb{R}^2 or \mathbb{R}^3 is a subspace of dimension 0.
- A line through the origin is a subspace of dimension 1.
- A plane the origin is a subspace of dimension 2.

through

Slide 13/14

For each set, determine whether it is a basis for \mathbb{R}^3 .

$$S_{1} := \left\{ \begin{bmatrix} 1\\2\\1 \end{bmatrix}, \begin{bmatrix} 3\\0\\2 \end{bmatrix}, \begin{bmatrix} 4\\2\\3 \end{bmatrix} \right\}, \quad S_{2} := \left\{ \begin{bmatrix} 1\\9\\5 \end{bmatrix}, \begin{bmatrix} 3\\6\\5 \end{bmatrix}, \begin{bmatrix} 7\\3\\5 \end{bmatrix} \right\}$$
$$S_{3} := \left\{ \begin{bmatrix} 1\\2\\1 \end{bmatrix}, \begin{bmatrix} 3\\0\\2 \end{bmatrix}, \begin{bmatrix} 4\\2\\3 \end{bmatrix}, \begin{bmatrix} 5\\4\\1 \end{bmatrix} \right\}, \quad S_{4} := \left\{ \begin{bmatrix} 1\\9\\5 \end{bmatrix}, \begin{bmatrix} 3\\6\\5 \end{bmatrix} \right\}$$

(Pause the video and answer these before checking the solution.)

A concatenation of the vectors in
$$S_1$$

is $A := \begin{bmatrix} 1 & 3 & 4 \\ 2 & 0 & 2 \\ 1 & 2 & 3 \end{bmatrix}$.
Compute det $(A) = 2 \cdot (T_1)^2 \det \begin{bmatrix} 3 & 4 \\ 2 & 3 \end{bmatrix} + 2 \cdot (-1)^2 \cdot \det \begin{bmatrix} 1 & 3 \\ 1 & 2 \end{bmatrix}$
 $= -2 \cdot (9 - 8) + -2 \cdot (2 - 3)$
 $= 0.$

Slide 14/14

For each set, determine whether it is a basis for \mathbb{R}^3 .

$$S_{1} := \left\{ \begin{bmatrix} 1\\2\\1 \end{bmatrix}, \begin{bmatrix} 3\\0\\2 \end{bmatrix}, \begin{bmatrix} 4\\2\\3 \end{bmatrix} \right\}, \quad S_{2} := \left\{ \begin{bmatrix} 1\\9\\5 \end{bmatrix}, \begin{bmatrix} 3\\6\\5 \end{bmatrix}, \begin{bmatrix} 7\\3\\5 \end{bmatrix} \right\}$$
$$S_{3} := \left\{ \begin{bmatrix} 1\\2\\1 \end{bmatrix}, \begin{bmatrix} 3\\0\\2 \end{bmatrix}, \begin{bmatrix} 4\\2\\3 \end{bmatrix}, \begin{bmatrix} 5\\4\\1 \end{bmatrix} \right\}, \quad S_{4} := \left\{ \begin{bmatrix} 1\\9\\5 \end{bmatrix}, \begin{bmatrix} 3\\6\\5 \end{bmatrix} \right\}$$

(Pause the video and answer these before checking the solution.) <u>Solution</u>:

- ► The determinant of a concatenation of S₁ is 0, so it is not invertible. By Theorem 3, the set S₁ is not a basis for ℝ³.
- The determinant of a concatenation of S_2 is nonzero, so it is invertible. By Theorem 3, the set S_2 is a basis for \mathbb{R}^3 .
- The number of vectors in each of S_3 and S_4 is not 3, so they are <u>not</u> bases for \mathbb{R}^3 .

Slide 14