Lecture 12a

Spanning Sets

Last time, we generalized lines and planes through the origin.

Recall: A subspace of \mathbb{R}^{n}

A subspace of \mathbb{R}^{n} is a non-empty subset V of \mathbb{R}^{n} which is

- closed under addition; that is, for all v, w in V, the sum $v+w$ is in V, and
- closed under scalar multiplication; that is, for all v in V and c in \mathbb{R}, the product $c v$ is in V.

Recall: Constructions of four types of subspaces

- The solution set to a homogeneous SLE
- The kernel of a matrix
- Eigenspaces of a matrix
- The image of a matrix

Recall: Checking if vectors are in these subspaces

You can check if a vector v is in...

- ...the solution set of a SLE by plugging in the entries (arithmetic)
- ...the kernel of A by checking if $A v$ is 0 (arithmetic)
- ...the λ-eigenspace of A by checking if Av is λv (arithmetic)
- ...the image of A by checking if $A x=v$ is consistent (row reduction)

Goal

Reduce the information of a subspace (an infinite set of vectors) to a finite set of vectors, called a spanning set.

For a solution set, we already know how to do this, by using parameters. So we have a good answer for kernels and eigenspaces.

Exercise 1 (motivating example)

Find every element of the kernel of

$$
A:=\left[\begin{array}{cccc}
2 & -2 & -4 & 4 \\
-1 & 1 & 3 & 2
\end{array}\right]
$$

Exercise 1 (motivating example)
Find every element of the kernel of

$$
A:=\left[\begin{array}{cccc}
2 & -2 & -4 & 4 \\
-1 & 1 & 3 & 2
\end{array}\right]
$$

That is, find all solutions to $A\left[\begin{array}{l}a \\ b \\ c \\ d\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$.
Row reduce the augmented matrix $\left[\begin{array}{lll}A & 10\end{array}\right]$:

$$
\begin{aligned}
{\left[\begin{array}{cccc|c}
2 & -2 & -4 & 4 & 0 \\
-1 & 1 & 3 & 2 & 0
\end{array}\right] } & \rightarrow\left[\begin{array}{cccc|c}
1 & -1 & -2 & 2 & 0 \\
-1 & 1 & 3 & 2 & 0
\end{array}\right]
\end{aligned} \underset{R_{2} \mapsto R_{1}+R_{2}}{\left[\begin{array}{cccc|c}
1 & -1 & -2 & 2 & 0 \\
0 & 0 & 1 & 4 & 0
\end{array}\right]} \underbrace{\left[\begin{array}{ccc}
2 & R_{1}
\end{array}\right.}_{\text {REF }}
$$

So $A\left[\begin{array}{l}a \\ b \\ c \\ d\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$ is equivalent to $\left\{\begin{aligned} a-b-2 c+2 d & =0 \\ c+4 d & =0\end{aligned}\right.$
Since col 2 and col 4 have no leading is, let $b:=t, d:=r$.

$$
\begin{aligned}
a-b-2 c+2 d=0 & \Rightarrow a-t-2(-4 r)+2 r=0 \Rightarrow a-t+8 r+2 r=0 \Rightarrow a=t-10 r \\
c+4 d=0 & \Rightarrow c+4 r=0 \Rightarrow c=-4 r
\end{aligned}
$$

Every vector in $\operatorname{ker}(A)$ is of the form
$\left[\begin{array}{r}t-10 r \\ t-4 r \\ r\end{array}\right]$ for t, r in \mathbb{R}. That is, $\operatorname{ker}(A)=\left\{\left[\begin{array}{r}t-10 r \\ t \\ -4 r \\ r\end{array}\right]\right.$ for t, r in $\left.\mathbb{R}\right\}$.

Important observation from Exercise 1

Our answer is equivalent to saying that every element of $\operatorname{ker}(\mathrm{A})$ can be written as a linear combination of two vectors:

$$
\left[\begin{array}{c}
t-10 r \\
t \\
-4 r \\
r
\end{array}\right]=t\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right]+r\left[\begin{array}{c}
-10 \\
0 \\
-4 \\
1
\end{array}\right]
$$

We can observe a similar phenomenon for images.

Exercise 2

$$
B:=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right]
$$

Show that every element of $\operatorname{im}(B)$ is a linear combination of the column vectors of B.

Recall (Def) $\operatorname{im}(B)=\left\{\begin{array}{r}v i n \mathbb{R}^{\# \text { rows of } B} \text { such that } v=B \omega \\ \text { for some } w \text { in } \mathbb{R}^{\# \text { columns of } B}\end{array}\right\}$

$$
B:=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right]
$$

Solution + Instructor's comments

Show that every element of $\operatorname{im}(B)$ is a linear combination of the column vectors of B.
$\left[\begin{array}{c}\text { When you see the phrase "show that every "S" } \\ \text { or "Show that for all.", } \\ \text { start your argument with "Let [a letter] be?"] }\end{array}\right.$
Let v be in $\operatorname{im}(B)$.
[Next, write what it means for [your chosen lefter] to be...] In this case, write what it means for v to be in in (B)]

That is, $V=B w$ for some w in \mathbb{R}^{3}.
[Our goal is to show that v is a linear combination of $\left[\begin{array}{l}1 \\ 4 \\ 7\end{array}\right],\left[\begin{array}{l}2 \\ 5 \\ 8\end{array}\right],\left[\begin{array}{l}3 \\ 6 \\ 9\end{array}\right]$. That is, show that v can be written as

$$
v=\underset{\text { some }}{\text { number }}\left[\begin{array}{l}
1 \\
4 \\
7
\end{array}\right]+\underset{\text { some }}{\text { number }}\left[\begin{array}{l}
2 \\
5 \\
8
\end{array}\right]+\underset{\text { some }}{\text { number }}\left[\begin{array}{l}
3 \\
6 \\
9
\end{array}\right]
$$

So $\quad V=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right]\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$ for some a, b, c in \mathbb{R}.

$$
\begin{aligned}
& =\left[\begin{array}{l}
1 a+2 b+3 c \\
4 a+5 b+6 c \\
7 a+8 b+9 c
\end{array}\right] \\
& =\left[\begin{array}{l}
1 a \\
4 a \\
7 a
\end{array}\right]+\left[\begin{array}{c}
2 b \\
5 b \\
8 b
\end{array}\right]+\left[\begin{array}{l}
3 c \\
6 c \\
9 c
\end{array}\right]
\end{aligned}
$$

$V=a\left[\begin{array}{l}1 \\ 4 \\ 7\end{array}\right]+b\left[\begin{array}{l}2 \\ 5 \\ 8\end{array}\right]+c\left[\begin{array}{l}3 \\ 6 \\ 9\end{array}\right]$ for some a, b, c in \mathbb{R}.
The above sequence of equalities says
$v=a\left[\begin{array}{l}1 \\ 4 \\ 7\end{array}\right]+b\left[\begin{array}{l}2 \\ 5 \\ 8\end{array}\right]+c\left[\begin{array}{l}3 \\ 6 \\ 9\end{array}\right]$ for some numbers a, b, c.
We've shown v is a linear combination of the column vectors of B We should tell the reader.
Therefore, v is a linear combination of the column vectors of B. [To conclude, write that we've shown the original statement]

We have shown that every element of $\operatorname{im}(B)$ is a linear combination of the column vectors of B. - the end -

Exercise 2

$$
B:=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right]
$$

Show that every element of $\mathrm{im}(B)$ is a linear combination of the column vectors of B.
SAMPLE STUDENT PROOF

Let v be in $\operatorname{im}(B)$.
That is, $v=B w$ for some w in \mathbb{R}^{3}.
So

$$
\begin{aligned}
V & =\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right] \text { for some } a, b, c \text { in } \mathbb{R} . \\
& =\left[\begin{array}{l}
1 a+2 b+3 c \\
4 a+5 b+6 c \\
7 a+8 b+9 c
\end{array}\right] \\
& =\left[\begin{array}{l}
1 a \\
4 a \\
7 a
\end{array}\right]+\left[\begin{array}{l}
2 b \\
5 b \\
8 b
\end{array}\right]+\left[\begin{array}{l}
3 c \\
6 c \\
9 c
\end{array}\right] \\
V & =a\left[\begin{array}{l}
1 \\
4 \\
7
\end{array}\right]+b\left[\begin{array}{l}
2 \\
5 \\
8
\end{array}\right]+c\left[\begin{array}{l}
3 \\
6 \\
9
\end{array}\right] \text { for some } a, b, c \text { in } \mathbb{R} .
\end{aligned}
$$

Therefore, v is a linear combination of the column vectors of B.

We have shown that every element of $\operatorname{im}(B)$ is a linear combination of the column vectors of B.

- the end of student's proof -

Exercise 1 says: we can write every element in the Kernel of a matrix as a linear combination of a set of vectors.
Exercise 2 says: we can write every element in the image of a matrix as a linear combination of a set of vectors.
We want to do this for all subspaces.

DEFINITION 1: Span

The span of a set of vectors is the set of their linear combinations.
in this class, the set of vectors is usually finite
Example
$\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}-10 \\ 0 \\ -4 \\ 1\end{array}\right]\right\}:=\left\{t\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 0\end{array}\right]+s\left[\begin{array}{c}-10 \\ 0 \\ -4 \\ 1\end{array}\right]\right.$ for all t, s in $\left.\mathbb{R}\right\}$
$\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 4 \\ 7\end{array}\right],\left[\begin{array}{l}2 \\ 5 \\ 8\end{array}\right],\left[\begin{array}{l}3 \\ 6 \\ 9\end{array}\right]\right\}:=\left\{r\left[\begin{array}{l}1 \\ 4 \\ 7\end{array}\right]+s\left[\begin{array}{l}2 \\ 5 \\ 8\end{array}\right]+t\left[\begin{array}{l}3 \\ 6 \\ 9\end{array}\right]\right.$ for all r, s, t in $\left.\mathbb{R}\right\}$

Fact 1: Spans are images of matrices

The image of A equals the span of the set of column vectors of A.

Example

(of a matrix)

Since every image is a subspace, we get a result for free.

Fact 2: Spans are subspaces

The span of a set of vectors in \mathbb{R}^{n} is a subspace of \mathbb{R}^{n}.

Fact 3: Subspaces are closed under spans

If a subspace contains a set of vectors, it also contains their span.
For example, if v_{1}, v_{2}, v_{3} are in a subspace S, then we know that every linear combination of v_{1}, v_{2}, v_{3} is also in S.

It is easy to construct every element of a span, and so we will often want to write a subspace as the span of a set of vectors.

DEFINITION 2: Spanning sets

A spanning set of V is a set of vectors whose span is V.
a subspace
' S spans V ' $\Leftrightarrow S$ is a spanning set for $V \Leftrightarrow V=\operatorname{span}(S)$

Exercise 3

Let W be the subspace of \mathbb{R}^{3} consisting of vectors whose second entry is the average of the other two. Show that

$$
\left\{\left[\begin{array}{l}
1 \\
4 \\
7
\end{array}\right],\left[\begin{array}{l}
2 \\
5 \\
8
\end{array}\right],\left[\begin{array}{l}
3 \\
6 \\
9
\end{array}\right]\right\}
$$

is a spanning set for W.

Exercise 3

Let W be the subspace of \mathbb{R}^{3} consisting of vectors whose second entry is the average of the other two. Show that

$$
\left\{\left[\begin{array}{l}
1 \\
4 \\
7
\end{array}\right],\left[\begin{array}{l}
2 \\
5 \\
8
\end{array}\right],\left[\begin{array}{l}
3 \\
6 \\
9
\end{array}\right]\right\}
$$

is a spanning set for W.
We need to show $W=\operatorname{span}\left(\left\{\left[\begin{array}{l}1 \\ 4 \\ 7\end{array}\right],\left[\begin{array}{l}2 \\ 5 \\ 8\end{array}\right],\left[\begin{array}{l}3 \\ 6 \\ 9\end{array}\right]\right\}\right)$
Let v be in W.
[Next, write what it means for v to be in w]
That is, $\quad V=\left(\begin{array}{c}a \\ \frac{a+b}{2} \\ b\end{array}\right)$ for some numbers a, b
We need to show that v is a linear combination of $\left[\begin{array}{l}1 \\ 4 \\ 7\end{array}\right],\left[\begin{array}{l}2 \\ 5 \\ 8\end{array}\right],\left[\begin{array}{l}3 \\ 6 \\ 9\end{array}\right]$.] That is, we need to show that there are c_{1}, c_{2}, c_{3} such that

$$
v=C_{1}\left[\begin{array}{l}
1 \\
4 \\
7
\end{array}\right]+C_{2}\left[\begin{array}{l}
2 \\
5 \\
8
\end{array}\right]+C_{3}\left[\begin{array}{l}
3 \\
6 \\
9
\end{array}\right]
$$

> Solution + Instructor's

Comments

We want to show that the equation

$$
c_{1}\left[\begin{array}{l}
1 \\
4 \\
7
\end{array}\right]+c_{2}\left[\begin{array}{l}
2 \\
5 \\
8
\end{array}\right]+c_{3}\left[\begin{array}{l}
3 \\
6 \\
9
\end{array}\right]=\left[\begin{array}{c}
a \\
\frac{a+b}{2} \\
b
\end{array}\right]
$$

has a solution.
$\left[\begin{array}{l}\text { Warning: The variables are } C_{1}, c_{2}, C_{3} . \\ \text { The letters } a, b \text { represent fixed numbers. }\end{array}\right.$

$$
\begin{aligned}
& {\left[\begin{array}{l}
1 c_{1}+2 c_{2}+3 c_{3} \\
4 c_{1}+5 c_{2}+6 c_{3} \\
7 c_{1}+8 c_{2}+9 c_{3}
\end{array}\right]=\left[\begin{array}{c}
a \\
\frac{a+b}{2} \\
b
\end{array}\right]} \\
& {\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right]=\left[\begin{array}{c}
a \\
\frac{a+b}{2} \\
b
\end{array}\right]}
\end{aligned}
$$

We will show that this equation has a solution, ie. consistent.

Row reduce augmented matrix.

$$
\left.\begin{array}{rl}
{\left[\begin{array}{lll|l}
1 & 2 & 3 & a \\
4 & 5 & 6 & \frac{a+b}{2} \\
7 & 8 & 9 & b
\end{array}\right]} & \rightarrow\left[\begin{array}{ccc|c}
1 & 2 & 3 & a \\
0 & -3 & -6 & -4 a+\frac{a+b}{2} \\
0 & -6 & -12 & -7 a+b
\end{array}\right] \\
R_{2} \mapsto-4 R_{1}+R_{2} \\
R_{3} \mapsto-7 R_{1}+R_{3} \\
& {\left[\begin{array}{ccc|c}
1 & 2 & 3 & a \\
0 & -3 & -6 & \frac{-7 a+b}{2} \\
0 & -6 & -12 & -7 a+b
\end{array}\right]}
\end{array} \rightarrow\left[\begin{array}{ccc|c}
1 & 2 & 3 & a \\
0 & -3 & -6 & \frac{-7 a+b}{2} \\
0 & 0 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{ccc|c}
1 & 2 & 3 & a \\
0 & 1 & 2 & \frac{-7 a+b}{-6} \\
0 & 0 & 0 & 0
\end{array}\right]\right]
$$

We are only interested in showing the system is consistent.
So we dort need to find the solutions
(although you can find the solutions using the usual back sub method)]
There is no leading 1 in the right column of an REF matrix equivalent to

$$
\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right]=\left[\begin{array}{c}
a \\
\frac{a+b}{2} \\
b
\end{array}\right] .
$$

This tells us that the system is consistent.
$\left[\begin{array}{r}\text { That is, there exist } c_{1}, c_{2}, c_{3} \text { such that } \\ c_{1}\left[\begin{array}{l}1 \\ 4 \\ 7\end{array}\right]+c_{2}\left[\begin{array}{l}2 \\ 5 \\ 8\end{array}\right]+c_{3}\left[\begin{array}{l}3 \\ 6 \\ 9\end{array}\right]=\left[\begin{array}{c}a \\ \frac{a+b}{2}\end{array}\right]\end{array}\right]$
So v can be written as a linear combination of $\left[\begin{array}{l}1 \\ 4 \\ 7\end{array}\right],\left[\begin{array}{l}2 \\ 5 \\ 8\end{array}\right]$, and $\left[\begin{array}{l}3 \\ 6 \\ 9\end{array}\right]$. Therefore, the set $\left\{\left[\begin{array}{l}1 \\ 4 \\ 7\end{array}\right],\left[\begin{array}{l}2 \\ 5 \\ 8\end{array}\right],\left[\begin{array}{l}3 \\ 6 \\ 9\end{array}\right]\right\}$ spans W.

$$
\left[\text { Meaning } W=s p a n\left(\left[\begin{array}{l}
1 \\
4 \\
7
\end{array}\right],\left[\begin{array}{l}
2 \\
5 \\
8
\end{array}\right],\left[\begin{array}{l}
3 \\
6 \\
9
\end{array}\right]\right) .\right]
$$

$\left\{\left[\begin{array}{l}1 \\ 4 \\ 7\end{array}\right],\left[\begin{array}{l}2 \\ 5 \\ 8\end{array}\right],\left[\begin{array}{l}3 \\ 6 \\ 9\end{array}\right]\right\}$
$\left(\left\{\left[\begin{array}{l}1 \\ 4 \\ 7\end{array}\right],\left[\begin{array}{l}2 \\ 5 \\ 8\end{array}\right],\left[\begin{array}{l}3 \\ 6 \\ 9\end{array}\right]\right\}\right)$
We need to show $W=$ span
Let v be in W. That is, $v=\left(\begin{array}{c}a \\ \frac{a+b}{2} \\ b\end{array}\right)$ for some numbers a, b.

We need to show that the equation

$$
\begin{aligned}
& c_{1}\left[\begin{array}{l}
1 \\
4 \\
7
\end{array}\right]+c_{2}\left[\begin{array}{l}
2 \\
5 \\
8
\end{array}\right]+c_{3}\left[\begin{array}{l}
3 \\
6 \\
9
\end{array}\right]=\left[\begin{array}{c}
a \\
\frac{a+b}{2} \\
b
\end{array}\right] \text { has a solution. } \\
& {\left[\begin{array}{l}
1 c_{1}+2 c_{2}+3 c_{3} \\
4 c_{1}+5 c_{2}+63_{3} \\
7 c_{1}+8 c_{2}+9 c_{3}
\end{array}\right]=\left[\begin{array}{c}
a \\
\frac{a+b}{} \\
b
\end{array}\right]} \\
& {\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right]=\left[\begin{array}{c}
a \\
\frac{a+b}{2} \\
b
\end{array}\right]}
\end{aligned}
$$

We will show that this equation has a solution, ie. consistent. Row reduce augmented matrix:
$\left[\begin{array}{lll|c}1 & 2 & 3 & a \\ 4 & 5 & 6 & \frac{a+b}{2} \\ 7 & 8 & 9 & b\end{array}\right]_{R_{2} \rightarrow-4 R_{1}+R_{2}} \rightarrow\left[\begin{array}{ccc|c}1 & 2 & 3 & a \\ 0 & -3 & -6 & -4 a+\frac{a+b}{2} \\ 0 & -6 & -7 a+b\end{array}\right]$

$$
\begin{gathered}
{\left[\begin{array}{ccc|c}
1 & 2 & 3 & a \\
0 & -3 & -6 & \frac{-7 a+b}{2} \\
0 & -6 & -12 & -7 a+b
\end{array}\right]} \\
R_{3} \mapsto-2 R_{2}+R_{3}
\end{gathered} \underset{R_{2} \mapsto-\frac{1}{3} R_{2}}{\left[\begin{array}{ccc|c}
1 & 2 & 3 & a \\
0 & -3 & -6 & \frac{-7 a+b}{2} \\
0 & 0 & 0 & 0
\end{array}\right]} \rightarrow\left[\begin{array}{ccc|c}
1 & 2 & 3 & a \\
0 & 1 & 2 & \frac{-7 a+b}{-6} \\
0 & 0 & 0 & 0
\end{array}\right]
$$

There is no leading 1 in the right column of an REF matrix equivalent to

$$
\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right]=\left[\begin{array}{c}
a \\
\frac{a+b}{2} \\
b
\end{array}\right] .
$$

This tells us that the system is consistent.
So v can be written as a linear combination of $\left[\begin{array}{l}1 \\ 4 \\ 7\end{array}\right],\left[\begin{array}{l}2 \\ 5 \\ 8\end{array}\right]$, and $\left[\begin{array}{l}3 \\ 6 \\ 9\end{array}\right]$.
Therefore, the set $\left\{\left[\begin{array}{l}1 \\ 4 \\ 7\end{array}\right],\left[\begin{array}{l}2 \\ 5 \\ 8\end{array}\right],\left[\begin{array}{l}3 \\ 6 \\ 9\end{array}\right]\right\}$ spans W.

- the end -

We now have several different ways to say the same thing.

Equivalent statements

- $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{n}\right\}$ spans V.
- $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{n}\right\}$ is a spanning set for V.
- $V=\operatorname{span}\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{n}\right\}$.
- $V=\operatorname{im}\left(\right.$ the matrix whose column vectors are $\left.\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{n}\right)$.
- Every element of V can be written as a linear combination of the vectors $v_{1}, v_{2}, \ldots, v_{n}$ in at least one way.

