Shapes of solutions	Kernel of a matrix	Eigenspace	Image of a matrix
000000	00	0	00

Lecture 11a

Subspaces

Shapes of solutions	Kernel of a matrix	Eigenspace	Image of a matrix
000000	00	0	00

Recall: Shapes of solutions

The solution set to a system of linear equations (SLE) must be one of the following.

- An empty set no solution
- A point one unique solution
- A line need one parameter, dimension is 1
- A plane need two parameters, dimension is 2
- ...a shape in higher dimension?

This is a remarkably powerful classification!

- The shape is determined by its dimension,
- The shapes all share many nice properties (e.g. contain the line through any pair of points).

Slide 2/13

Shapes of solutions	Kernel of a matrix	Eigenspace	Image of a matrix
000000	00	0	00

We will focus on the "shapes of solutions" for homogeneous system of linear equations (SLE).

Recall (Definition): A system of linear equations (SLE) is called **homogeneous** if the constants are zero; equivalently, the matrix equation is $Av = \vec{0}$.

Shapes of solutions (homogeneous)

The solution set to a homogeneous SLE must be one of:

- The origin
- A line through the origin requires one parameter, dimension: 1
- A plane through the origin requires two parameters, dimension: 2
- ...a higher dimensional shape through the origin?

Why focus on homogeneous systems?

- The properties are nicer.
- The solution set to a general SLE turns out to be a translation of the solution set to a homogeneous SLE.

Slide 3/13

Shapes of solutions	Kernel of a matrix	Eigenspace	Image of a matrix
000000	00	0	00

Goal

Define and study these general planar shapes through the origin.

We cannot use pictures or our geometric intuition for vectors of height 4 or taller.

Our strategy

Find a few essential properties that characterize these planar shapes, and then use those properties as a general definition.

That is, what properties distinguish the solution sets to homogeneous SLEs from all other shapes?

Slide 4/13

Shapes of solutions	Kernel of a matrix	Eigenspace	Image of a matrix
000000	00	0	00

First, we introduce new terminology.

Definition 1: Subsets

Suppose A is a set and B is another set whose elements are all elements of A. Then we say that B is a subset of A. We also say that A contains B.

Examples

- The set {1,3} is a subset of {1,2,3}.
- The set $\{1,3\}$ is also a subset of the set of real numbers \mathbb{R} .
- Any set V consisting some vectors of height 2 is subset of \mathbb{R}^2 .
- The set \mathbb{R}^2 (all vectors of height 2) is a subset of \mathbb{R}^2 .
- Every set is a subset of itself.
- The set ℝ² is not a subset of ℝ³, because a vector of height 2 is not a vector of height 3.
- The set $\{1, \frac{2}{5}\}$ is **not** a subset of \mathbb{Z} (the set of integers).

Slide 5/13

Shape 0000	s of solutions •00	Kernel of a matrix 00	Eigenspace O	Image of a matrix 00
	Definition 2 multiplicat	2: "closed under additio ion" for subsets	n" and "closed und	er scalar
	Suppose S	is a subset of \mathbb{R}^n .		
	1 We sa	y that S is closed under	addition if	
		for all v, w in S, t	he sum v $+$ w is in .	s l
	🥑 We sa	y that <i>S</i> is closed under	scalar multiplicatio	n if
		for all v in S and c in I	\mathbb{R} , the product cv is	; in <i>S</i> .
		a numbe	rC	

Exercise 1

Let S be a non-empty subset of \mathbb{R}^n which is closed under scalar multiplication. Show that S must contain the zero vector.

Slide 6/13

Exercise 1

Let S be a non-empty subset of \mathbb{R}^n which is closed under scalar multiplication. Show that S must contain the zero vector.

$$\frac{\text{Solution}:}{\text{Since S is non-empty and S is a subset of } R'',} \\ \text{We know S contains at least one vector of height n.} \\ \text{Let v be a vector in S.} \\ \text{Since S is closed under scalar multiplication,} \\ (by definition S contains cv for each c in R.) \\ \text{of "closed under scalar multiplication"} \\ (S contains every scalar multiple of v). \\ \text{Therefore, } OV = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \\ \text{is in S.} \\ \text{-the end-} \end{aligned}$$

From now on, we can use this fact without needing to repeat the argument.

Exercise 1

Let S be a non-empty subset of \mathbb{R}^n which is closed under scalar multiplication. Show that S must contain the zero vector.

Whenever we know that a subset of IRⁿ is nonempty and is closed under scalar multiplication, we also know that this subset contains the zero vector.

Shapes of solutions	Kernel of a matrix	Eigenspace	Image of a matrix
0000000	00	0	00

Theorem 1 (Properties of solution sets to homogeneous SLEs)

Let V be the solution set to a homogeneous system of linear equations in n_{\bullet} variables. Then...

- V is a subset of \mathbb{R}^n ; that is, the elements of V are *n*-vectors.
- V contains the zero vector.
- V is closed under addition; that is,

for all v, w in V, the sum v + w is in V, and

• V is closed under scalar multiplication; that is,

for all v in V and c in \mathbb{R} , the product cv is in V.

There's some overlap between these properties. E.g., Exercise 1 tells us if a subset S is closed under scalar multiplication then S contains the zero vector.

Slide 7/13

Shapes of solutions	Kernel of a matrix	Eigenspace	Image of a matrix
000000	00	0	00

Definition 3: A subspace of \mathbb{R}^n

A subspace of \mathbb{R}^n is a non-empty subset V of \mathbb{R}^n which is

closed under addition; that is,

for all v, w in V, the sum v + w is in V, and

2 closed under scalar multiplication; that is,

for all v in V and c in \mathbb{R} , the product cv is in V.

line y=-x

Slide 8

Note 1: Exercise 1 tells us a subspace must contain the zero vector.

Examples of subspaces

- The solution set to a homogeneous SLE (by Theorem 1).
- The set of 2-vectors whose entries sum to 0. $\int \begin{bmatrix} t \\ -t \end{bmatrix} for t$ in $\mathbb{R}_{\frac{1}{2}}$
- The origin.
- A line through the origin.
- A plane through the origin.

Note: By Thm1, a homogeneous solution set is a subspace.

Shapes of solutions	Kernel of a matrix	Eigenspace	Image of a matrix
000000	•0	0	00

Definition 4: The kernel of a matrix

Let A be an $m \times n$ -matrix. Then the **kernel** of A is the set of vectors v such that Av = $\vec{0}$. That is,

$$\ker(\mathsf{A}) := \{\mathsf{v} \text{ in } \mathbb{R}^n \text{ such that } \mathsf{A}\mathsf{v} = \vec{\mathsf{0}}\}$$

The textbook calls this set the null space of A, denoted null(A).

This is just a homogeneous solution set with a different name!

The kernel of A is the same as the solution set to $Av = \vec{0}$.

Since $Av = \vec{0}$ is a homogeneous SLE, the kernel of A is the solution set to a homogeneous SLE. So we see from Theorem 1 that...

Theorem 2: Kernels are subspaces

The kernel of an $m \times n$ matrix is a subspace of \mathbb{R}^n .

Slide 9/13

We've seen that ker(A) is a subspace of \mathbb{R}^2 . (By definition) every subspace of \mathbb{R}^2 contains [0]. So [0] is in ker(A). The kernel of an mxn matrix is a subspace of \mathbb{R}^2 Contains [0]. So [0] is in ker(A). Thm 2 says: -the end of alternative solution to (e) -

Shape 0000	es of solutions	Kernel of a matrix 00	Eigenspace ●	Image of a matrix 00
	Definition 5: The	λ -eigenspace of a matrix	atrix "lambda"	
	Let A be an $n \times r$ λ -eigenspace of A vector. That is,	h-matrix (square matria), denoted by $E_\lambda(A)$,	rix) and λ be a number. T is the set of λ -eigenvector	he 's and the zero
		${\sf E}_\lambda({\sf A}):=\{{\sf v} \ {\sf in} \ {\mathbb R}^n$	such that $Av = \lambda v$ }	
	Note: $\vec{0}$ is in $E_{\lambda}(F)$	A) even though $\vec{0}$ is n	ot an eigenvector.	
	An eigenspace is j	ust a homogeneous s	olution set with a different	name!
	The following thre	ee sets are the same.		
	1 The λ -eigen	space of A.	Recall: <i>A</i> -eigenvectors	ave ron-zero
	2 The kernel of the second	of the matrix $A - \lambda Id$. Solutions to	$(A - \lambda d) V = 0$
	3 The solution	set of the equation	$A\mathbf{v} = \lambda\mathbf{v}.$	

Since the λ -eigenspace of a square matrix is the kernel of a matrix, it follows from Theorem 2 that ...

Slide 11/13

Theorem 3: Eigenspaces are subspaces

The λ -eigenspace of an $n \times n$ matrix is a subspace of \mathbb{R}^n .

Shapes of solutions	Kernel of a matrix	Eigenspace	Image of a matrix
	00	O	●0

So far, all of our subspaces are new perspectives on the same construction: solutions to homogeneous SLEs. Let's give a different source of subspaces.

Definition 6: The image of a matrix

Let A be an $m \times n$ -matrix. The **image** of A is the set of vectors v which can be written as v = Aw for some vector w. I.e.

im(A) := {v in \mathbb{R}^m such that v = Aw for some w in \mathbb{R}^n }

Theorem 4: Images are subspaces

The image of an $m \times n$ matrix must be a subspace of \mathbb{R}^m .

Slide 12/13

C) Does
$$\begin{pmatrix} 1 & -1 \\ 0 & 1 \\ 2 & 0 \end{pmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}$$
 have a solution?
If yes, then $\begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}$ is in $im(A)$.
If no, then $\begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix}$ is not in $im(A)$.
Row reduce the augmented matrix:
 $\begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & 1 \\ 2 & 0 & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 2 & 0 & 2 \\ 0 & 1 & 1 \\ 1 & -1 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & -1 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & -1 & 0 \end{bmatrix}$
 $\sum_{wap R_1, R_3} R_1 \mapsto \frac{1}{2}R_1$ $R_3 \mapsto -R_1 + R_3$ $R_3 \mapsto R_2 + R_3$ in REF

Note: We are only trying to answer the guestion "Does $\begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ have a solution?"

Let's answer this question. Recall: Once we have an augmented matrix in REF, The original SLE has a solution (i.e. consistent) if and only if the REF augmented matrix has no leading 1 in the right column.

$$\begin{bmatrix} 1 & 0 & | & 1 \\ 0 & 1 & | & 1 \end{bmatrix}$$
 does not have a leading 1 in the right column, so the SLE is consistent. This means $\begin{bmatrix} 1 & -1 \\ 0 & 1 \\ 2 & 0 \end{bmatrix} \begin{bmatrix} X \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}$ has a solution. So $\begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}$ is in $\operatorname{im} \begin{pmatrix} 1 & -1 \\ 0 & 1 \\ 2 & 0 \end{bmatrix}$.

$$\frac{Sanity Check}{Actually solve} \xrightarrow{\begin{bmatrix} 1 & -1 \\ 0 & 1 \\ 2 & 0 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 0 & 1 \\ 2 & 0 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \xrightarrow{\begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}} \xrightarrow{\begin{array}{c} 1 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ \end{array}} \xrightarrow{\begin{array}{c} 1 & -1 \\ 0 & 0 \\ 0 & 0 \\ \end{array}} \xrightarrow{\begin{array}{c} 1 & 0 \\ 0 & 0 \\ 0 & 0 \\ \end{array}} \xrightarrow{\begin{array}{c} 1 & -1 \\ 0 & 0 \\ 0 & 0 \\ \end{array}} \xrightarrow{\begin{array}{c} 1 & 0 \\ 0 & 0 \\ 0 & 0 \\ \end{array}} \xrightarrow{\begin{array}{c} 1 & -1 \\ 0 & 0 \\ 0 & 0 \\ \end{array}} \xrightarrow{\begin{array}{c} 1 & 0 \\ 0 & 0 \\ 0 & 0 \\ \end{array}} \xrightarrow{\begin{array}{c} 1 & 0 \\ 0 & 0 \\ 0 & 0 \\ \end{array}} \xrightarrow{\begin{array}{c} 1 & 0 \\ 0 & 0 \\ 0 & 0 \\ \end{array}} \xrightarrow{\begin{array}{c} 1 & 0 \\ 0 & 0 \\ 0 & 0 \\ \end{array}} \xrightarrow{\begin{array}{c} 1 & 0 \\ 0 & 0 \\ 0 & 0 \\ \end{array}} \xrightarrow{\begin{array}{c} 1 & 0 \\ 0 & 0 \\ 0 & 0 \\ \end{array}} \xrightarrow{\begin{array}{c} 1 & 0 \\ \end{array}} \xrightarrow{\begin{array}{c} 1 & 0 \\ 0 & 0 \\ \end{array}} \xrightarrow{\begin{array}{c} 1 & 0 \\$$

<u>Recall</u>: Once we have an augmented matrix in REF,

if this REF augmented matrix has a leading 1 in the right column, we can conclude the original SLE has no solution (inconsistent).

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 has a leading 1 in the right column.
So the original SLE is inconsistent.
So $\begin{pmatrix} 1 & -1 \\ 0 & 1 \\ 2 & 0 \end{pmatrix} \begin{pmatrix} X \\ y \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ has no solution.
Therefore, $\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ is not in $\operatorname{Im}\left(\begin{pmatrix} 1 & -1 \\ 0 & 1 \\ 2 & 0 \end{pmatrix} \right).$

e) you can go through the same process to check
whether
$$A \begin{bmatrix} x \\ y \end{bmatrix} = v$$
 (where $v := \begin{bmatrix} 0 \\ 0 \end{bmatrix}$) has a solution
But, by Thm 4, im (A) is a subspace of \mathbb{R}^3 ,
and we've seen that a subspace contains the zero vector,
(see Note 1, slide $\frac{8}{13}$)
so [$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ is in im(A).

Theorem 4: Images are subspaces The image of an $m \times n$ matrix must be a subspace of \mathbb{R}^m .