Lecture 10b

Linear Transformations, part b




Recall: Theorem 1

Suppose T : R” — R™, Then the following three statements are
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@ [/ — T, for some m x n matrix A; that is, T is a linear
transformation.

® T preserves addition and scalar multiplication.

© T preserves linear combinations.

Goals:

» A trick to compute the matrix corresponding to a linear
transformation.

» Geometric meaning of matrix algebra, determinant, and
eigenvectors.



Computing the matrix A using standard basis vectors
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The standard basis vectors

Def: The ith standard basis vector in R"”, denoted ¢;, is the
vector which is 1 in the /th entry and zero everywhere else.

Examples:

» The standard basis vectors in R?:

v Lofeld]

» The standard basis vectors in R3:

E’ZMJ ef[f]) %W

» The standard basis vectors in R*:



Computing the matrix A using standard basis vectors

(o] e]e]

He cet C,]L‘ Vectovs
of l’lev‘j’n‘t wm

Theorem: Finding the matrix of linear transformations

If a function f :L]I%’l is a linear transformation, then f = Tha,
where A chould have «n columng
‘ ‘ ’ A ghou(vl have_

A= f(el) f(e2) f(en) o
I

That is, the columns of A are given by applying f to the standard
basis vectors (of the appropriate size).
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Computing the matrix A using standard basis vectors
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Exercise 3

Suppose we know that the function@: R? — R? is a linear
transformation and is given by the formula

(1) =15

Find a matrix A such that F = Tx. (W'l apply fhe- above Heorem)
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Computing the matrix A using standard basis vectors
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Exercise 4

Let L be the line through the points (0,0) and (a, b) and let
F : R? — R? be projection onto L. Whe)re_ (4,b) # (0,0)

@ Show that F is a linear transformation.
® Find a matrix A such that F = Ta.
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Exercise 4

Let L be the line through the points (0,0) and (a, b) and let

F : R? — R? be projection onto L. whexa ,b) # (0,0)

@ Show that F is a linear transformation.
® Find a matrix A such that F = Ta.
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Geometric meaning
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|dea: Acting on sets instead of a point

Notation: If S is a set in the domain of f, then f(S) is the set of
all outputs obtained by plugging in the elements of S.

If A = [_1 L

0 2], we can find what T, does to some shape S.

S Ta(S)
Ta
—




Geometric meaning
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It turns out functions are linear if they preserve certain shapes.

Theorem: A geometric characterization of linear transformations

A transformation R” — R™ is linear if and only if it sends...
® lines to lines,

® triangles to triangles, and

® the origin to the origin.

v

| heorem ’l)
Linear transformations don't necessarily preserve other shapes!
They can send squares to parallelograms and circles to ellipses!

In practice, this is often harder to check than the gyious theorem.




Geometric meaning
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Matrix multiplication revisited

Matrix multiplication corresponds to composition of functions:
TAB ES TA O TB

That is, inputing a vector into Tag is the same as first inputing it into
Tg and then taking the output and plugging it into Ta.

Input | Ts I Ta Output

0
1

LetA:[

—1 . :
0 ] . Compute A* without computing any products.
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Geometric meaning
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Matrix inverses revisited

If A is invertible, then Tp-1 is the function which ‘undoes’ Th.

This is called the inverse function to the original function.

o If Ty : R? — R? rotates vectors by 90° counterclockwise,
then Ty,-1 rotates vectors by 90° clockwise.

® The inverse of a reflection is itself.

® Projections are not invertible. Why? Because they cannot be
undone (multiple vectors go to the same point, so information
is lost).




Geometric meaning
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2 X 2 determinants revisited

If A is a 2 x 2 matrix and S is any shape in the plane R?, then
Area(Ta(S)) = |det(A)|Area(S)

Area of
l.e. |det(A)| equals At(reeaaoofoiléfazlit'

S [_01 ;] Ta(S)
—

Area(S) =3 det(A) = -2 Area(Ta(S)) =6




Geometric meaning
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A similar result is true in 3D space.

3 x 3 determinants revisited
If S is a nice 3D shape, Then

Vol(Ta(S)) = |det(A)[Vol(S)

Larger determinants

This can be extended to larger determinants with a notion of
n-dimensional volume that can be defined in terms of integrals.




Geometric meaning
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Recall (Def): An eigenvector of a matrix A is a non-zero vector v where
Av = cv for some number c.

Eigenvectors revisited

Def: An eigenvector of a linear transformation F is a non-zero vector v where
F(v) points in the same or opposite direction as v (equivalently, F(v) is a
vector parallel to v).

Fact: A nonzero vector v is an eigenvector of T, if and only if v is an
eigenvector of A.

Consider the reflection F : R? — R? across the line of slope 2. )
v=(—4,2) / v=(—1,3) / /
/ / v=(1,2)| “/
// // F(v)=(3,1) F(v)=(1,2)
/ / /
/ / /
)/ F(v)=(4,—2) )/ )
/ / /
F(v)=(—1) v F (v) not parallel to v F(v)=1v
Eigenvector! Not an eigenvector Eigenvector!

&L;:& s an eloenvector L"}/\ ¢ ot an eigenvecto( E&l Eagr':/ed-a(
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