Lecture 10b
Linear Transformations, part b

Recall: Theorem 1

Suppose $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$. Then the following three statements are equivalent. vect of of of set of vectors of height m
(1) $T=T_{A}$ for some $m \times n$ matrix A; that is, T is a linear transformation.
(2) T preserves addition and scalar multiplication.
(3) T preserves linear combinations.

Goals:

- A trick to compute the matrix corresponding to a linear transformation.
- Geometric meaning of matrix algebra, determinant, and eigenvectors.

The standard basis vectors

Def: The i th standard basis vector in \mathbb{R}^{n}, denoted e_{i}, is the vector which is 1 in the i th entry and zero everywhere else.

Examples:

- The standard basis vectors in \mathbb{R}^{2} :

$$
e_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \quad e_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

- The standard basis vectors in \mathbb{R}^{3} :

$$
e_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \quad e_{2}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], e_{3}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

- The standard basis vectors in \mathbb{R}^{4} :

$$
e_{1}=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right], \quad e_{2}=\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right], \quad e_{3}=\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right], e_{4}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]
$$

the set of vectors of height m

Theorem: Finding the matrix of linear transformations

If a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a linear transformation, then $f=T_{\mathrm{A}}$, where

$$
\left.\mathrm{A}:=\left[\begin{array}{cccc}
\mid & \mid & \cdots & \mid \\
f\left(e_{1}\right) & f\left(e_{2}\right) & \cdots & f\left(e_{n}\right) \\
\mid & \mid & \cdots & \mid
\end{array}\right]\right\}^{A} \begin{gathered}
\text { should have } \\
m \\
\text { rows }
\end{gathered}
$$

That is, the columns of A are given by applying f to the standard basis vectors (of the appropriate size).

Exercise 3
Suppose we know that the function $\mathcal{F}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is a linear transformation and is given by the formula

$$
F\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)=\left[\begin{array}{l}
x+y \\
x-y
\end{array}\right]
$$

Find a matrix A such that $F=T_{\mathrm{A}}$. (We'll apply the above theorem)

Compute $F\left(e_{i}\right)$ for all standard basis vectors e_{i}.

$$
\begin{aligned}
& F\left(e_{1}\right)=F\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)=\left[\begin{array}{l}
1+0 \\
1-0
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] \quad \begin{array}{l}
\text { col of } A \\
\text { cot } A
\end{array} \\
& F\left(e_{2}\right)=F\left(\left[\begin{array}{l}
0 \\
1
\end{array}\right]\right)=\left[\begin{array}{l}
0+1 \\
0-1
\end{array}\right]=\left[\begin{array}{c}
1 \\
-1
\end{array}\right],
\end{aligned} \begin{aligned}
& \text { the ind } \\
& \text { col of } A
\end{aligned}
$$

Let $A:=[\underbrace{F\left(e_{1}\right) F\left(e_{2}\right.}]=\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right] 0$
A has 2 columns because the domain of F is \mathbb{R}^{2} By the theorem, $F=T_{A}$

Check that

$$
\begin{aligned}
& T_{A}\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)=F\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right): \\
& T_{A}\left(\left[\begin{array}{l}
x \\
y \\
y
\end{array}\right]\right)=\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right] \\
&=\left[\begin{array}{l}
x+y \\
x-y
\end{array}\right]
\end{aligned}
$$

$$
F\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)=\left[\begin{array}{l}
x+y \\
x-y
\end{array}\right]
$$

Exercise 4
Let L be the line through the points $(0,0)$ and (a, b), and let $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be projection onto L.
(1) Show that F is a linear transformation.
(2) Find a matrix A such that $F=T_{\mathrm{A}}$.
(1) (Goal: We will show that F preserves $\frac{\text { addition }}{(\text { step 1) }}$ and scalar multiplication) $\frac{(\text { step } 2)}{\text { 2) }}$ Recall formula for projection onto L :
set $w:=\left[\begin{array}{l}a \\ b\end{array}\right]$, then $F(v)=\frac{w \cdot v}{w \cdot \omega} \omega \leftarrow \omega$ is a vector
(step 1)
Let v_{1} and v_{2} be in \mathbb{R}^{2}. why is $w_{0}\left(r_{1}+v_{2}\right)=w_{0} \cdot v_{1}+w_{0} \cdot v_{2}$?

$$
\begin{aligned}
F\left(v_{1}+v_{2}\right) & =\frac{w \cdot\left(v_{1}+v_{2}\right)}{w \cdot w} w \\
& =\frac{w \cdot v_{1}+w \cdot v_{2}}{w \cdot w} w
\end{aligned}
$$

Answer Let $v_{1}=\left[\begin{array}{l}x_{1} \\ y_{1}\end{array}\right], \quad v_{2}=\left[\begin{array}{l}x_{2} \\ y_{2}\end{array}\right]$

$$
\begin{aligned}
w \cdot\left(v_{1}+v_{2}\right) & =\left[\begin{array}{l}
a \\
b
\end{array}\right] \cdot\left(\left[\begin{array}{l}
x_{1} \\
y_{1}
\end{array}\right]+\left[\begin{array}{l}
x_{2} \\
y_{2}
\end{array}\right]\right) \\
& =\left[\begin{array}{l}
a \\
b
\end{array}\right] \cdot\left[\begin{array}{l}
x_{1}+x_{2} \\
y_{1}+y_{2}
\end{array}\right]
\end{aligned}
$$

$$
=a\left(x_{1}+x_{2}\right)+b\left(y_{1}+y_{2}\right)
$$

$w \cdot v_{1}+w \cdot v_{2}=\left[\begin{array}{l}a \\ b\end{array}\right] \cdot\left[\begin{array}{l}x_{1} \\ y_{1}\end{array}\right]+\left[\begin{array}{l}a \\ b\end{array}\right] \cdot\left[\begin{array}{l}x_{2} \\ y_{2}\end{array}\right]$
$=0 x+b y_{y}+\alpha_{x}^{2}+b_{y}$ Slide $6 / 13$

$$
\begin{aligned}
& =\left(\frac{w \cdot v_{1}}{w \cdot w}+\frac{w_{0} v_{2}}{w \cdot w}\right) w \\
& =\frac{w_{0} v_{1}}{w_{0} w} w+\frac{w_{0} \cdot v_{2}}{w \cdot w} w \\
& =F\left(v_{1}\right)+F\left(v_{2}\right)
\end{aligned}
$$

So F preserves addition.
(Step 2)

Let v be in \mathbb{R}^{2} (meaning v is a vector of height 2)

$$
\begin{aligned}
F(c v) & =\frac{w \cdot c v}{w \cdot w} w \\
& =\frac{c(w \cdot v)}{w \cdot w} w \\
& =c F(v)
\end{aligned}
$$

Why is $w \cdot c v=c(w \cdot v)$?
and c be in \mathbb{R} (meaning c is a number)

Answer: Let $v=\left[\begin{array}{l}x \\ y\end{array}\right]$

$$
\begin{aligned}
& w \cdot c v=\left[\begin{array}{l}
a \\
b
\end{array}\right] \cdot\left[\begin{array}{l}
c \\
c y
\end{array}\right]=a c x+b c y \\
& c(w, v)=c\left(\left[\begin{array}{l}
a \\
b
\end{array}\right] \cdot\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)=c(a x+b y)
\end{aligned}
$$

So F preserves scalar multiplication.
So F is a linear trans formation

Exercise 4
Let L be the line through the points $(0,0)$ and (a, b), and let $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be projection onto L.
(1) Show that F is a linear transformation.
(2) Find a matrix A such that $F=T_{\mathrm{A}}$.
(2) To find A so that $F=T_{A}$, we just need to compute $F\left(e_{i}\right)$ for all standard basis vectors

$$
\begin{aligned}
F\left(e_{1}\right) & =\frac{w \cdot e_{1}}{w \cdot w} w \\
& =\frac{\left[\begin{array}{l}
a \\
b
\end{array}\right] \cdot\left[\begin{array}{l}
1 \\
0
\end{array}\right]}{\left[\begin{array}{l}
a \\
b
\end{array}\right] \cdot\left[\begin{array}{l}
a \\
b
\end{array}\right]}\left[\begin{array}{l}
a \\
b
\end{array}\right] \\
& =\frac{a}{a^{2}+b^{2}}\left[\begin{array}{l}
a \\
b
\end{array}\right] \\
& =\left[\begin{array}{l}
\frac{a^{2}}{a^{2}+b^{2}} \\
\frac{a b}{a^{2}+b^{2}}
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
F\left(e_{2}\right) & =\frac{w \cdot e_{2}}{w \cdot w} \omega \\
& =\frac{\left[\begin{array}{l}
a \\
b
\end{array}\right] \cdot\left[\begin{array}{l}
0 \\
1
\end{array}\right]}{\left[\begin{array}{l}
a \\
b
\end{array}\right] \cdot\left[\begin{array}{l}
a \\
b
\end{array}\right]}\left[\begin{array}{l}
a \\
b
\end{array}\right] \\
& =\frac{b}{a^{2}+b^{2}}\left[\begin{array}{l}
a \\
b
\end{array}\right] \\
& =\left[\begin{array}{l}
\frac{a b}{a^{2}+b^{2}} \\
\frac{b^{2}}{a^{2}+b^{2}}
\end{array}\right]
\end{aligned}
$$

There fore,

$$
A=\left[\begin{array}{cc}
\frac{a^{2}}{a^{2}+b^{2}} & \frac{a b}{a^{2}+b^{2}} \\
\frac{a b}{a^{2}+b^{2}} & \frac{b^{2}}{a^{2}+b^{2}}
\end{array}\right]
$$

$$
=\frac{1}{a^{2}+b^{2}}\left[\begin{array}{cc}
a^{2} & a b \\
a b & b^{2}
\end{array}\right]
$$

$$
\rceil<
$$

where $F=T_{A}$

Idea: Acting on sets instead of a point

Notation: If S is a set in the domain of f, then $f(S)$ is the set of all outputs obtained by plugging in the elements of S.

Example

If $A=\left[\begin{array}{cc}-1 & 1 \\ 0 & 2\end{array}\right]$, we can find what T_{A} does to some shape S.

It turns out functions are linear if they preserve certain shapes.

Theorem: A geometric characterization of linear transformations

A transformation $\mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is linear if and only if it sends...

- lines to lines,
- triangles to triangles, and
- the origin to the origin.

In practice, this is often harder to check than the previous theorem.
Theorem 1)
Linear transformations don't necessarily preserve other shapes! They can send squares to parallelograms and circles to ellipses!

Matrix multiplication revisited

Matrix multiplication corresponds to composition of functions:

$$
T_{\mathrm{AB}}=T_{\mathrm{A}} \circ T_{\mathrm{B}}
$$

That is, inputing a vector into $T_{A B}$ is the same as first inputing it into T_{B} and then taking the output and plugging it into T_{A}.

Exercise 5

Let $A=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$. Compute A^{4} without computing any products.
Recall: Multiplication by A rotates a vector 90° counterclockwise.
The above says $T_{A A A A}=T_{A \circ} \circ T_{A \circ} \circ T_{A} \circ T_{A}$, So $T_{A^{4}}$ rotates a vector 360°, that is, fixes a vector. So $T_{A^{4}}\left(\left[\begin{array}{l}x \\ y\end{array}\right]\right)=\left[\begin{array}{l}x \\ y\end{array}\right]$. So $A^{4}\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}x \\ y\end{array}\right]$. So $A^{4}=\left[\begin{array}{c}1 \\ 0 \\ 0\end{array}\right]$.

Matrix inverses revisited

If A is invertible, then $T_{\mathrm{A}^{-1}}$ is the function which 'undoes' T_{A}.
This is called the inverse function to the original function.

Examples

- If $T_{\mathrm{M}}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ rotates vectors by 90° counterclockwise, then $T_{\mathrm{M}^{-1}}$ rotates vectors by 90° clockwise.
- The inverse of a reflection is itself.
- Projections are not invertible. Why? Because they cannot be undone (multiple vectors go to the same point, so information is lost).

2×2 determinants revisited

If A is a 2×2 matrix and S is any shape in the plane \mathbb{R}^{2}, then

$$
\operatorname{Area}\left(T_{\mathrm{A}}(S)\right)=|\operatorname{det}(\mathrm{A})| \operatorname{Area}(S)
$$

I.e. $|\operatorname{det}(\mathrm{A})|$ equals $\frac{\text { Area of output }}{\text { Area of input }}$.

Example

$$
\operatorname{Area}(S)=3 \quad \operatorname{det}(\mathrm{~A})=-2 \quad \operatorname{Area}\left(T_{\mathrm{A}}(S)\right)=6
$$

A similar result is true in 3D space.
3×3 determinants revisited
If S is a nice 3D shape, Then

$$
\operatorname{Vol}\left(T_{\mathrm{A}}(S)\right)=|\operatorname{det}(\mathrm{A})| \operatorname{Vol}(S)
$$

Larger determinants

This can be extended to larger determinants with a notion of n-dimensional volume that can be defined in terms of integrals.

Recall (Def): An eigenvector of a matrix A is a non-zero vector v where $A v=c v$ for some number c.

Eigenvectors revisited

Def: An eigenvector of a linear transformation F is a non-zero vector v where $F(v)$ points in the same or opposite direction as v (equivalently, $F(v)$ is a vector parallel to v).

Fact: A nonzero vector v is an eigenvector of T_{A} if and only if v is an eigenvector of A.

Example

Consider the reflection $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ across the line of slope 2 .

$$
F(v)=(-1) v
$$

Eigenvector!

$F(\mathrm{v})$ not parallel to v
Not an eigenvector

$$
F(\mathrm{v})=1 \mathrm{v}
$$

$\left[\begin{array}{c}-4 \\ 2\end{array}\right]$ is an eigenvector $\quad\left[\begin{array}{c}-1 \\ 3\end{array}\right]$ is not an eigenvector $\quad\left[\begin{array}{l}1 \\ 2\end{array}\right] \begin{aligned} & \text { is an } \\ & \text { eigenvector } S l i d e 13 / 13\end{aligned}$
Eigenvector!
the corresponding eigenvalue is -1
the corresponding eigenvalue is 1 .

Convince yourself:
The only eigenvectors of F are vectors perpendicular to the line $y=2 x$ or vectors parallel to the line $y=2 x$

