Lecture 10a

Linear Transformations

Last time

Definition: Given a matrix A, the linear transformation of A is the function T_{A} defined by left multiplication by A, that is,

$$
T_{\mathrm{A}}(\mathrm{v}):=\mathrm{A} v
$$

Examples of linear transformations

- Rotations
- Reflections
- Projections

A non-linear transformation

- Translation

Goal: How do we tell whether a transformation is linear (that is, comes from a matrix)?

Function terminology

A function in mathematics is a rule for taking in an input and returning an output. Pictorially:

The data defining a function also includes two sets.

- The domain: the set of possible inputs.
- The target: the set of allowed outputs.

Functions may also be called maps, operations, or transformations.
The target is also called the codomain in some textbooks

Examples

The function $f(x)=x^{2}+1$ inputs numbers and outputs numbers.

That is, f has domain $\mathbb{S e t}$ and target \mathbb{R} set.

Rotating a vector in the plane 90° counterclockwise defines a function r with domain \mathbb{R}^{2} and target \mathbb{R}^{2}

The derivative $\frac{d}{d x}$ is an operation (i.e. a function) which inputs differentiable functions of x and outputs functions of x.

Function notation and terminology

We can name the function and give the domain and target as:

This would be read aloud as ' F from A to B '.
Examples

- Consider a function $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)=x^{2}+1$.
- Let $r: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be rotation by 90° clockwise.
- Differentiation by x is a function $\frac{d}{d x}: \underbrace{C^{1}(x)}_{\begin{array}{c}\text { set of differentiable } \\ \text { functions }\end{array}} \rightarrow \underbrace{C^{0}(x) .}_{\begin{array}{c}\text { set of o f } \\ \text { Continuus } \\ \text { functions }\end{array}}$

Recall: $\mathbb{R}^{d}=\{$ vectors of height $d\}$

Domain and target of linear transformation

An $m \times n$-matrix A gives a linear transformation $T_{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$.arget

- The domain of T_{A} is \mathbb{R}^{n}

That is, the function \bar{T}_{A} inputs vectors of height n

- The target of T_{A} is \mathbb{R}^{m}

That is, the function T_{A} outputs vectors of height m

- The name of the function is T_{A}. This special notation that reminds us that the function is given by multiplication by the matrix A. That is, T_{A} can only input vectors whose height is width(A), and outputs vectors whose height is height(A).

Restating the problem

Given a function $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, when is there an $m \times n$-matrix A such that $F=T_{\mathrm{A}}$?

Plan: Find nice properties that characterize linear transformations.

One of the properties of linear transformations

Linear transformations send zero vectors to zero vectors.
Why? Multiplication by a zero vector gives a zero vector.
Last time: The function that translates a point in \mathbb{R}^{2} to the right by 1

$$
F\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)=\left[\begin{array}{c}
x+1 \\
y
\end{array}\right]
$$

cannot be a linear transformation. Why not? Note that

$$
F\left(\left[\begin{array}{l}
0 \\
0
\end{array}\right]\right)=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

so F sends the zero vector to a non-zero vector.

Properties of linear transformations
Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation.

- T preserves addition. If v and w are in \mathbb{R}^{n}, then

$$
T(v+w)=T(v)+T(w)
$$

- T preserves scalar multiplication. If v is in \mathbb{R}^{n} and c is in \mathbb{R}, then

$$
T(c v)=c T(v)
$$

E.g. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$. Then...
"T $\begin{gathered}\text { preserves. } \\ \text { addition" }\end{gathered} T\left(\left[\begin{array}{l}a \\ b\end{array}\right]+\left[\begin{array}{l}c \\ d\end{array}\right]\right)=T\left(\left[\begin{array}{l}a \\ b\end{array}\right]\right)+T\left(\left[\begin{array}{l}c_{d} \\ d\end{array}\right]\right)$ for all a, b, c, d

Each follows directly from a property of matrix multiplication.

$$
\begin{aligned}
& T_{A}(v+w) \stackrel{\text { def of }}{=} A(v+w)=A v+A w \stackrel{T_{A}}{=} \stackrel{\text { of }}{=} T_{A}^{A}(v)+T_{A}(w) \\
& \text { distributivity } \\
& T_{\mathrm{A}}(c v) \stackrel{\text { defoe } T_{A}}{=} \mathrm{A}\left(c v \underset{\substack{\text { maritrx } \\
\text { ali emetic }}}{=} \mathrm{Av} \stackrel{\text { def of } T_{A}}{=} T_{\mathrm{A}}(\mathrm{v})\right.
\end{aligned}
$$

Exercise 1

Show that the function $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by

$$
F\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)=\left[\begin{array}{c}
x^{2} \\
x+y
\end{array}\right]
$$

is not a linear transformation.

Strategy for showing that a function F is not a linear trans formation.

- Check $F(\vec{b})$. If $F(\overrightarrow{0}) \neq \overrightarrow{0}$, then you are done.
- Try v, ω and check $F(v+\omega) \neq F(v)+F(\omega)$.
- Try v and a number $c \neq 1$.

Check $F(c v) \neq c F(v)$.
Exercise 1
Show that the function $F: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ given by

$$
F\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)=\left[\begin{array}{c}
x^{2} \\
x+y
\end{array}\right]
$$

is not a linear transformation.

- Check $F\left(\left[\begin{array}{l}0 \\ 0\end{array}\right]\right)=\left[\begin{array}{l}0 \\ 0\end{array}\right] \quad\left(\right.$ not helpful) $\begin{array}{l}\text { Dort include } \\ \text { Scratch work }\end{array}$ scratch work

Answer to Exercise 1:

- Try $v:=\left[\begin{array}{l}1 \\ 2\end{array}\right], w:=\left[\begin{array}{l}3 \\ 4\end{array}\right]$

$$
\begin{aligned}
& F(v+w)=F\left(\left[\begin{array}{l}
1 \\
2
\end{array}\right]+\left[\begin{array}{l}
3 \\
4
\end{array}\right]\right) \left\lvert\, F(v)+F(w)=F\left(\left[\begin{array}{l}
1 \\
2
\end{array}\right]\right)+F\left(\left[\begin{array}{l}
3 \\
4
\end{array}\right]\right)\right. \\
& =F\left(\left[\begin{array}{l}
1+3 \\
2+4
\end{array}\right]\right) \\
& =F\left(\left[\begin{array}{l}
4 \\
6
\end{array}\right]\right) \\
& =\left[\begin{array}{l}
4^{2} \\
4+6
\end{array}\right] \\
& =\left[\begin{array}{l}
16 \\
10
\end{array}\right] \\
& F(v+w) \neq F(v)+F(w)
\end{aligned}
$$

So F does not preserve addition, so F is not a linear transformation.

We can combine the two rules above into a single rule.
Properties of linear transformations, restated
If $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a linear transformation, then T preserves linear combinations. Meaning,
if $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{k}$ are in \mathbb{R}^{n} and $c_{1}, c_{2}, \ldots, c_{k}$ are in \mathbb{R}, then

$$
T\left(c_{1} \mathrm{v}_{1}+c_{2} \mathrm{v}_{2}+\cdots+c_{k} \mathrm{v}_{k}\right)=c_{1} T\left(\mathrm{v}_{1}\right)+c_{2} T\left(\mathrm{v}_{2}\right)+\cdots+c_{k} T\left(\mathrm{v}_{k}\right)
$$

E.g. If $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is a linear transformation, then

$$
\begin{aligned}
& T\left(c_{1}\left[\begin{array}{l}
a \\
b
\end{array}\right]+c_{2}\left[\begin{array}{l}
c \\
d
\end{array}\right]+c_{3}\left[\begin{array}{l}
e \\
f
\end{array}\right]\right)= \\
& c_{1} T\left(\left[\begin{array}{l}
a \\
b
\end{array}\right]\right)+c_{2} T\left(\left[\begin{array}{l}
c_{d} \\
d
\end{array}\right]\right)+c_{3} T\left(\left[\begin{array}{l}
e \\
f
\end{array}\right]\right)
\end{aligned}
$$

for all $c_{1}, c_{2}, c_{3}, a, b, c, d, e, f$ in \mathbb{R}

Exercise 2
Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear transformation, and assume we know

$$
T\left(\left[\begin{array}{l}
1 \\
3
\end{array}\right]\right)=\left[\begin{array}{c}
3 \\
-2
\end{array}\right] \text { and } T\left(\left[\begin{array}{l}
2 \\
4
\end{array}\right]\right)=\left[\begin{array}{c}
-3 \\
4
\end{array}\right]
$$

Find $T\left(\left[\begin{array}{c}-1 \\ 1\end{array}\right]\right)$.
$\left[\begin{array}{c}\text { Strategy: } \frac{\text { Step } 1}{\text { Write }}\left[\begin{array}{c}-1 \\ 1\end{array}\right] \text { as a linear combination of }\left[\begin{array}{l}1 \\ 3\end{array}\right] \text { and }\left[\begin{array}{l}2 \\ 4\end{array}\right] \\ \left.\text { - } \begin{array}{c}\text { Step } 2\end{array}\right]\end{array}\right.$
Step 1

$$
\begin{gathered}
{\left[\begin{array}{c}
-1 \\
1
\end{array}\right]=c_{1}\left[\begin{array}{l}
1 \\
3
\end{array}\right]+c_{2}\left[\begin{array}{l}
2 \\
4
\end{array}\right]} \\
{\left[\begin{array}{c}
-1 \\
1
\end{array}\right]=\left[\begin{array}{l}
c_{1}+2 c_{2} \\
3 c_{1}+4 c_{2}
\end{array}\right]} \\
c_{1}+2 c_{2}=-1 \\
3 c_{1}+4 c_{2}=1
\end{gathered}
$$

This is a system of two linear equations in c_{1}, c_{2} equivalent to the augmented matrix

$$
\begin{aligned}
& {\left[\begin{array}{cc|c}
1 & 2 & -1 \\
3 & 4 & 1
\end{array}\right] } \\
& R_{2} \mapsto-3 R_{1}+R_{2}\left[\begin{array}{cc|c}
1 & 2 & -1 \\
0 & -2 & 4
\end{array}\right] \\
& R_{2} \mapsto-\frac{1}{2} R_{2} \quad\left[\begin{array}{cc|c}
1 & 2 & -1 \\
0 & 1 & -2
\end{array}\right] \quad \begin{array}{ll}
C_{2}=-2 \\
&
\end{array} \begin{array}{ll}
C_{1}+2 C_{2}=-1 & \\
& \\
&
\end{array} \\
& \Rightarrow C_{1}+2(-2)=-1 \\
&
\end{aligned}
$$

So $\left[\begin{array}{r}-1 \\ 1\end{array}\right]=3\left[\begin{array}{l}1 \\ 3\end{array}\right]+-2\left[\begin{array}{l}2 \\ 4\end{array}\right]$
Check: $-1=3.1-2.2$

$$
1=3.3-2.4
$$

Step 2

$$
T\left(\left[\begin{array}{c}
-1 \\
1
\end{array}\right]\right)=T\left(3\left[\begin{array}{l}
1 \\
3
\end{array}\right]+-2\left[\begin{array}{l}
2 \\
4
\end{array}\right]\right)
$$

T preserves
 linear transformations

$$
\begin{aligned}
& =3\left[\begin{array}{c}
3 \\
-2
\end{array}\right]-2\left[\begin{array}{c}
-3 \\
4
\end{array}\right]\left(T\left(\left[\begin{array}{c}
1 \\
3
\end{array}\right]\right)=\left[\begin{array}{c}
3 \\
-2
\end{array}\right] \text { and } T\left(\left[\begin{array}{c}
2 \\
4
\end{array}\right]\right)=\left[\begin{array}{c}
-3 \\
4
\end{array}\right]\right) \\
& =\left[\begin{array}{c}
9 \\
-6
\end{array}\right]+\left[\begin{array}{c}
6 \\
-8
\end{array}\right]
\end{aligned}
$$

$$
=\left[\begin{array}{c}
15 \\
-14
\end{array}\right]
$$

— the end of Exercise 2 ~

Exercise [(1) T is a lin. transformation] implies [(3) T preserves linear combination Exercise If not (2): T doesn't preserve addition $O R T$ does nt preserve scalar multiplication] then [not (1): T is not a linear transformation]

Theorem 1

Suppose $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$. Then the following three statements are equivalent.
(1) $T=T_{A}$ for some $m \times n$ matrix A; that is, T is a linear transformation.
(2) T preserves addition and scalar multiplication.
(3) T preserves linear combinations.

Next time: a trick for computing the above matrix.

