Function terminology	Properties of linear transformations	A linear function preserves linear combinations
0000	0000	00

Lecture 10a

Linear Transformations

Function terminology	Properties of linear transformations	A linear function preserves linear combinations
0000	0000	00

Last time

<u>Definition</u>: Given a matrix A, the **linear transformation of** A is the function T_A defined by left multiplication by A, that is,

 $T_{\mathsf{A}}(\mathsf{v}) := \mathsf{A}\mathsf{v}$

Examples of linear transformations

- Rotations
- Reflections
- Projections

A non-linear transformation

• Translation

Goal: How do we tell whether a transformation is linear (that is, comes from a matrix)?

Slide 2/12

Function terminology	Properties of linear transformations	A linear function preserves linear combinations
●000	0000	00

Function terminology

A **function** in mathematics is a rule for taking in an input and returning an output. Pictorially:

nput
$$\longmapsto$$
 Function \longrightarrow Output

The data defining a function also includes two sets.

- The **domain**: the set of possible inputs.
- The **target**: the set of allowed outputs.

Functions may also be called maps, operations, or transformations.

The target is also called the codomain in some textbooks

Slide 3/12

Function terminology	Properties of linear transformations	A linear function preserves linear combinations
0000	0000	00

Function notation and terminology

We can name the function and give the domain and target as:

Examples

- Consider a function $f : \mathbb{R} \to \mathbb{R}$ given by $f(x) = x^2 + 1$.
- Let $: \mathbb{R}^2 \to \mathbb{R}^2$ be rotation by 90° clockwise.

• Differentiation by x is a function $\frac{d}{dx} : C^1(x) \to C^0(x)$. set of differentiable functions functions

Slide 5/12

Function terminology	Properties of linear transformations	A linear function preserves linear combinations
0000	0000	00

Recall: $\mathbb{R}^d = \{ \text{vectors of height } d \}$

That is, T_A can only input vectors whose height is width(A), and outputs vectors whose height is height(A).

Slide 6/12

Properties of linear transformations •000 A linear function preserves linear combinations ∞

Restating the problem

Given a function $F : \mathbb{R}^n \to \mathbb{R}^m$, when is there an $m \times n$ -matrix A such that $F = T_A$?

Plan: Find nice properties that characterize linear transformations.

One of the properties of linear transformations

Linear transformations send zero vectors to zero vectors.

Why? Multiplication by a zero vector gives a zero vector.

Last time: The function that translates a point in \mathbb{R}^2 to the right by 1

$$F\left(\begin{bmatrix}x\\y\end{bmatrix}\right) = \begin{bmatrix}x+1\\y\end{bmatrix}$$

cannot be a linear transformation. Why not? Note that

$$F\left(\begin{bmatrix}0\\0\end{bmatrix}
ight) = \begin{bmatrix}1\\0\end{bmatrix},$$

so F sends the zero vector to a non-zero vector.

Slide 7/12

Properties of linear transformations 0000

A linear function preserves linear combinations ∞

Properties of linear transformations

Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation.

• T preserves addition. If v and w are in \mathbb{R}^n , then

$$T(v+w) = T(v) + T(w)$$

• T preserves scalar multiplication. If v is in \mathbb{R}^n and c is in \mathbb{R} , then T(cv) = cT(v)

E.g. Let $T: \mathbb{R}^2 \to \mathbb{R}^3$. Then ... "T preserves $T\left(\begin{bmatrix}a\\b\end{bmatrix} + \begin{bmatrix}c\\d\end{bmatrix}\right) = T\left(\begin{bmatrix}a\\b\end{bmatrix}\right) + T\left(\begin{bmatrix}c\\d\end{bmatrix}\right)$ for all a,b,c,din \mathbb{R} "T preserves $T\left(k\begin{bmatrix}a\\b\end{bmatrix}\right) = kT\left(\begin{bmatrix}a\\b\end{bmatrix}\right)$ for all a,b,k in \mathbb{R}

Each follows directly from a property of matrix multiplication. $T_{A}(v+w) \stackrel{\text{def of TA}}{=} A(v+w) \stackrel{\text{p}}{=} Av + Aw \stackrel{\text{def of TA}}{=} T_{A}(v) + T_{A}(w)$ $\underset{T_{A}(cv) \stackrel{\text{def of TA}}{=} A(cv) \stackrel{\text{p}}{=} c Av \stackrel{\text{def of TA}}{=} c T_{A}(v)$ $\underset{\text{matrix}}{\overset{\text{matrix}}{=}} T_{A}(v) \stackrel{\text{matrix}}{=} T_{A}(v)$

Slide 8/12

A linear function preserves linear combinations $_{\rm OO}$

Exercise 1

Show that the function
$$F : \mathbb{R}^2 \to \mathbb{R}^2$$
 given by

$$F\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} x^2 \\ x+y \end{bmatrix}$$

is not a linear transformation.

Strategy for showing that a function F is not a linear transformation.
• Check
$$F(\delta)$$
. If $F(\delta) \neq \delta$, then you are dore.
• Try $\nabla_{\delta} W$ and check $F(\nabla + W) \neq F(\nabla) + F(\omega)$.
• Try $\nabla_{\delta} W$ and check $F(\nabla + W) \neq F(\nabla) + F(\omega)$.
• Try $\nabla_{\delta} W$ and a number $c \neq t$.
Check $F(c\nabla) \neq c F(\nabla)$.
Exercise 1
Show that the function $F : \mathbb{R}^2 \to \mathbb{R}^2$ given by
 $F\left(\begin{bmatrix} x \\ y \end{bmatrix} \right) = \begin{bmatrix} x^2 \\ x + y \end{bmatrix}$
is not a linear transformation.
• Check $F\left(\begin{bmatrix} \delta \\ z \end{bmatrix} \right) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ (not be $F(U)$) bort include
cratch under
Answar to Exercise 1:
• Try $\nabla_{\delta} := \begin{bmatrix} 1 \\ 2 \end{bmatrix}$, $W := \begin{bmatrix} 3 \\ 4 \end{bmatrix}$
 $F(\nabla) + F(\omega) = F\left(\begin{bmatrix} 1 \\ 2 \end{bmatrix} + F\left(\begin{bmatrix} 2 \\ 4 \end{bmatrix} \right)$
 $= \begin{bmatrix} 1^2 \\ 1 + 2 \end{bmatrix}$
 $F\left(\nabla + W \right) = F\left(\begin{bmatrix} 1 + 3 \\ 2 + 4 \end{bmatrix} \right)$
 $= \begin{bmatrix} 1^2 \\ 4 + 6 \end{bmatrix}$
 $= \begin{bmatrix} 1^0 \\ 10 \end{bmatrix}$
 $F(\nabla + F(\omega)) = F\left(\begin{bmatrix} 1 \\ 2 \end{bmatrix} + \begin{bmatrix} 3^* \\ 3 + 4 \end{bmatrix}$
 $= \begin{bmatrix} 1 \\ 3 \end{bmatrix} + \begin{bmatrix} 7 \\ 7 \end{bmatrix}$
 $= \begin{bmatrix} 1 \\ 6 \end{bmatrix}$
 $F(\nabla + W) \neq F(\omega)$ (so F does not preserve addition, so F is not a linear transformation.

Function terminology	Properties of linear transformations	A linear function preserves linear combinations
0000	0000	00

We can combine the two rules above into a single rule.

Properties of linear transformations, restated

If $T : \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation, then T preserves linear combinations. Meaning,

if $v_1, v_2, ..., v_k$ are in \mathbb{R}^n and $c_1, c_2, ..., c_k$ are in \mathbb{R} , then

$$T(c_1v_1 + c_2v_2 + \cdots + c_kv_k) = c_1T(v_1) + c_2T(v_2) + \cdots + c_kT(v_k)$$

E.g. If $T: \mathbb{R}^2 \to \mathbb{R}^2$ is a linear transformation, then $T\left(C_1\begin{bmatrix}a\\b\end{bmatrix} + C_2\begin{bmatrix}c\\d\end{bmatrix} + C_3\begin{bmatrix}e\\f\end{bmatrix}\right) =$ $C_1 T\left(\begin{bmatrix}a\\b\end{bmatrix}\right) + C_2 T\left(\begin{bmatrix}c\\d\end{bmatrix}\right) + C_3 T\left(\begin{bmatrix}e\\f\end{bmatrix}\right)$ for all $C_1, C_2, C_3, a, b, c, d, e, f$ in \mathbb{R}

Slide 10/12

Function termino	Properties of linear transformations	A linear function preserves linear combinations ●○
Exerc	ise 2	
Let 7	$:\mathbb{R}^2 ightarrow\mathbb{R}^2$ be a linear transform	ation, and assume we know
	$T\left(\begin{bmatrix}1\\3\end{bmatrix}\right) = \begin{bmatrix}3\\-2\end{bmatrix}$ and T	$\begin{pmatrix} \begin{bmatrix} 2 \\ 4 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} -3 \\ 4 \end{bmatrix}$
Find	$T\left(\begin{bmatrix}-1\\1\end{bmatrix}\right).$	
[Strat	egy: Write $\begin{bmatrix} -1\\ 1 \end{bmatrix}$ as a linear	combination of $\begin{bmatrix} 1\\ 3 \end{bmatrix}$ and $\begin{bmatrix} 2\\ 4 \end{bmatrix}$
	• Use the property: T 7	preserves linear combinations.
Step 1	$\begin{bmatrix} -1 \\ 1 \end{bmatrix} = C_1 \begin{bmatrix} 1 \\ 3 \end{bmatrix} + C_2 \begin{bmatrix} 2 \\ 4 \end{bmatrix}$	
	$\begin{bmatrix} -1\\1 \end{bmatrix} = \begin{bmatrix} C_1 & + & 2 & C_2\\ 3 & C_1 & + & 4 & C_2 \end{bmatrix}$	
	$C_{1} + 2C_{2} = -1$	
	$3C_1 + 4C_2 = 1$	

Slide 11/12

This is a system of two linear equations in
$$C_{1, C_{2}}$$

equivalent to the augmented matrix

$$\begin{bmatrix} 1 & 2 & | & -1 \\ 3 & 4 & | & 1 \end{bmatrix}$$

$$R_{2} \mapsto -3R_{1} + R_{2} \begin{bmatrix} 1 & 2 & | & -1 \\ 0 & -2 & | & 4 \end{bmatrix}$$

$$R_{2} \mapsto -\frac{1}{2}R_{2} \begin{bmatrix} 1 & 2 & | & -1 \\ 0 & -2 & | & 4 \end{bmatrix}$$

$$R_{2} \mapsto -\frac{1}{2}R_{2} \begin{bmatrix} 1 & 2 & | & -1 \\ 0 & -2 & | & 4 \end{bmatrix}$$

$$R_{2} \mapsto -\frac{1}{2}R_{2} \begin{bmatrix} 1 & 2 & | & -1 \\ 0 & -2 & | & 4 \end{bmatrix}$$

$$R_{2} \mapsto -\frac{1}{2}R_{2} \begin{bmatrix} 1 & 2 & | & -1 \\ 0 & -2 & | & 4 \end{bmatrix}$$

$$R_{2} \mapsto -\frac{1}{2}R_{2} \begin{bmatrix} 1 & 2 & | & -1 \\ 0 & -1 & -2 \end{bmatrix} \begin{bmatrix} C_{2} = -2 \\ -1 & -2 & -1 \\ \Rightarrow & C_{1} = -2 \\ \Rightarrow & C_{1} = -2 \end{bmatrix}$$
So
$$\begin{bmatrix} -1 \\ -1 \\ -1 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ -2 \end{bmatrix} + -2 \begin{bmatrix} 2 \\ 4 \end{bmatrix}$$

$$R_{2} \mapsto C_{1} + C_{2} = -2 \begin{bmatrix} -2 \\ -2 \end{bmatrix} + C_{2} = -2 \begin{bmatrix} -2 \\ -2 \end{bmatrix} = -2 \begin{bmatrix} -2 \\ -2 \end{bmatrix} = -2 \begin{bmatrix} -2 \\ -4 \end{bmatrix} = -2 \begin{bmatrix} -2 \\ -4 \end{bmatrix}$$

$$R_{2} \mapsto C_{1} = -2 \begin{bmatrix} -2 \\ -4 \end{bmatrix} = -2 \begin{bmatrix} -2 \\ -2 \end{bmatrix} = -2 \end{bmatrix} = -2 \begin{bmatrix} -2 \\ -2 \end{bmatrix} = -2 \begin{bmatrix} -2 \\ -2 \end{bmatrix} = -2 \end{bmatrix} = -2 \begin{bmatrix} -2 \\ -2 \end{bmatrix} = -2 \end{bmatrix} = -2 \begin{bmatrix} -2 \\ -2 \end{bmatrix} = -2 \end{bmatrix} = -2 \begin{bmatrix} -2 \\ -2 \end{bmatrix} = -2 \end{bmatrix} = -2 \begin{bmatrix} -2 \\ -2 \end{bmatrix} = -2 \end{bmatrix} = -2 \begin{bmatrix} -2 \\ -2 \end{bmatrix} = -2 \end{bmatrix} = -2 \begin{bmatrix} -2 \\ -2 \end{bmatrix} = -2 \end{bmatrix} = -2 \end{bmatrix} = -2 \end{bmatrix} = -2 \begin{bmatrix} -2 \\$$

Next time: a trick for computing the above matrix.

Slide 12/12