Week9\&10 Individual Worksheet (five problems)

- Due Mon, Nov 2, noon at Gradescope (moved to Fri, Nov 6)
- If you have a printer, you may print the worksheet and write directly on it. If you have a stylus, you may export the PDF file to your favorite note-taking app.
- Otherwise, write on your own notebook paper. Put each question on its own page (Q1 on its own page, Q2 on its own page, and so on).
- Submit individually by uploading a scanned PDF file on Gradescope. You are encouraged to work with your classmates in breakout rooms during class meetings.
- Ask for help during class or during office hours.

Lecture references: Lecture 10a, 10b, 11a, 11b

1 Question

a. Define a function $G: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by

$$
G\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)=\left[\begin{array}{c}
x^{2} \\
y
\end{array}\right] .
$$

Use the properties of linear transformation (from Lecture 10) to show that G is not a linear transformation.
(Write your solution following the sample answer given in lecture notes 10a, Exercise 1: egunawan.github.io/la/notes/lecture10a.pdf)
b. Warm-up: If A is a 2×2 matrix, what does Lecture 10 b say about the geometric meaning of $|\operatorname{det}(A)|$, the absolute value of the determinant of A ? Lecture 10b notes: egunawan.github.io/la/notes/lecture10b.pdf
Suppose $T_{A}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ acts by reflection across a line through the origin. What must $|\operatorname{det}(A)|$ be?
(Hint: How does reflection change areas? Imagine looking in the mirror.)

2 Question

Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the function given by

$$
f\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)=\left[\begin{array}{l}
2 x+y \\
x+2 y
\end{array}\right]
$$

a. Find a matrix A such that f is equal to the linear transformation of A (denoted by T_{A}).
(Reference: lecture 10b, Exercise 3: egunawan.github.io/la/notes/lecture10b.pdf. Check your answer! Is $A\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}2 x+y \\ x+2 y\end{array}\right]$?)
\square
b. The matrix A has two eigenvalues, 1 and 3 .

- Find all 1-eigenvectors of A, that is, find all nonzero vectors $\left[\begin{array}{l}x \\ y\end{array}\right]$ satisfying $A\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}x \\ y\end{array}\right]$.
- Find all 3-eigenvectors of A, that is, find all nonzero vectors $\left[\begin{array}{c}x \\ y\end{array}\right]$ satisfying $A\left[\begin{array}{l}x \\ y\end{array}\right]=3\left[\begin{array}{l}x \\ y\end{array}\right]$.
\square
c. For each eigenvalue of A, pick one of the eigenvectors. Call your chosen 1-eigenvector v and your chosen 3eigenvector w.

Your pick for a 1-eigenvector v : \square Your pick for a 3 -eigenvector w : \square

Plot v and w below

Plot $f(v)$ and $f(w)$ below

(Check that f in fact sends your v to a vector parallel to v and your w to a vector parallel to w.)

3 Question

Let

$$
B:=\left[\begin{array}{ccc}
-1 & 2 & 1 \\
2 & -4 & -2
\end{array}\right]
$$

Compute the kernel of B, that is, find all solutions to

$$
B\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

(If you're not sure how to do this, you can follow the answer to Exercise 1 in Lecture 12a egunawan.github.io/la/notes/lecture12a.pdf)

4 Question

Warm up: Review Exercise 3 of Lecture 11a notes egunawan.github.io/la/notes/lecture11a.pdf
Let

$$
B:=\left[\begin{array}{ccc}
-1 & 2 & 1 \\
2 & -4 & -2
\end{array}\right] \quad \text { like in the previous problem. }
$$

a. Determine whether $\left[\begin{array}{c}-1 \\ 2\end{array}\right]$ is in the image of B. Show work.
\square
b. Determine whether $\left[\begin{array}{l}1 \\ 2\end{array}\right]$ is in the image of B. Show work.
\square
c. Analyze the computation you did for $\left[\begin{array}{c}-1 \\ 2\end{array}\right]$ and $\left[\begin{array}{l}1 \\ 2\end{array}\right]$, then explain why every vector in the image of B must be of the form $\left[\begin{array}{c}t \\ -2 t\end{array}\right]$ for some number t.
(You don't need to write a full proof like in Question 5, but explain your thought process using words and math symbols.)
\square

5 Question

To earn full credit, follow the sample answers from Exercise 6 and 7 of Lecture 11b - notes: egunawan.github.io/la/notes/lecture11b.pdf

Let V be the subset of \mathbb{R}^{3} consisting of height- 3 vectors whose 3 rd entry is the sum of the first two entries. (For example, $\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{l}0 \\ 2 \\ 2\end{array}\right]$, and $\left[\begin{array}{l}4 \\ 4 \\ 8\end{array}\right]$ are in $\left.V\right)$. We will break down the steps of a proof that V is a subspace of \mathbb{R}^{3}.
a. Is V non-empty? Why and why not?
\square
b. "Let v and w be in V. What does this tell you about v and w ?
\square
c. Next, give an argument that $v+w$ is in V.
\square
d. What have you just shown about V ? (Hint: use the phrase "closed under ...")
\square
e. We need another argument to complete the proof. Fill in the blanks below to complete the proof that V is a subspace.
N ext, let v be in V and let r be in \mathbb{R}. This means we may write v as

We then check that
$r v=$

Therefore, $r v$ is in V, so V is \qquad
We have shown that V is a subspace.

