Week 11 Individual Worksheet (four pages, Lecture 12a and 12b)

Math 3333

- Due Monday, Nov 9, 2020 on Gradescope
- If you have a printer or a tablet/stylus, you may write directly on the worksheet.
- Otherwise, write on your own notebook paper. Put each question on its own page.
- Submit individually (on Gradescope). You are encouraged to work with your classmates in breakout rooms during class meetings and ask for help during class/office hours.

1 Question

Let V be the subspace of \mathbb{R}^{3} consisting of height- 3 vectors whose 3 rd entry is the sum of the first two entries. For example, $\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$ and $\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]$ are in V. (In the week $9 / 10$ worksheet, you showed that this subset is a subpsace - you don't need to show it again.) Let

$$
S:=\left\{\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]\right\}
$$

Show that S is a spanning set for V. (For full credit, follow "SAMPLE STUDENT PROOF" in Exercise 3 of Lecture 12a.)

2 Question

Let

$$
S:=\left\{\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]\right\}
$$

(from the previous question).
a. Use the computation you did earlier to determine whether S is linearly independent or linearly dependent. Explain. (You don't need to repeat the row reduce computation from the previous question.)
(For determining whether a set is linearly dependent or independent, see Lecture 12b Exercise 5 and 6, 7 in Lecture 12b.)
b. Let V be the subspace of \mathbb{R}^{3} consisting of height-3 vectors whose 3 rd entry is the sum of the first two entries (from the previous question). Use both part (a) of this page and the previous Question 1 to determine whether S is a basis for V. Give a brief explanation (write in complete sentences).

3 Question

$$
\text { Let } A:=\left[\begin{array}{llll}
1 & 2 & 1 & 2 \\
2 & 4 & 3 & 5
\end{array}\right]
$$

a. Compute $\operatorname{ker}(A)$, i.e., find all solutions to $A\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$. Then parametrize the solution set using the parameters s and t. (You may use a software to row reduce only. Show your input and output.)
(Recommended: Perform a check, i.e. compute $A v$ where v is a vector in your solution set and verify that it is equal to $\left[\begin{array}{l}0 \\ 0\end{array}\right]$.)
b. Find two vectors \mathbf{v} and \mathbf{w} where you can rewrite your parametrization of the kernel of A as $s \mathbf{v}+t \mathbf{w}$.
\square
c. Finish each of the following sentences.
(i) The kernel of A is equal to the set of all linear combinations of the vectors \qquad
(ii) The kernel of A is equal to the span of the vectors \qquad
(iii) The kernel of A is equal to the image of the matrix \qquad (Hint: See Exercise 2 \& Fact 1 in Lecture 12a.)

4 Question

a.

Let $A:=\left[\begin{array}{llll}1 & 2 & 1 & 2 \\ 2 & 4 & 3 & 5\end{array}\right]$ (the same as in the previous question).
(You have computed an REF matrix equivalent to A in the previous question. You don't need to do this again.)

How many leading 1s does your REF matrix have?
\square
What is the rank of A ?

How many parameters were required to parametrize the solution to $A x=0$?
(Hint/recall: when a column has no leading 1 , you set the variable corresponding to that column to a paramater. Also, I gave you the number of parameters in the previous question.)
\square
b. Let B be a 4×5 matrix (4 rows \& 5 columns). After row reducing to an REF matrix, you count that it has 3 leading 1 s .

What is the rank of B ?

How many parameters are required to parametrize the kernel of B ?
c. Let C be an $r \times c$ matrix and suppose C has rank k. How many vectors are required to span the kernel of C ?

