
4. Vector Geometry

4.1 Vectors and Lines

In this chapter we study the geometry of 3-dimensional space. We view a point in 3-space as an arrow from
the origin to that point. Doing so provides a “picture” of the point that is truly worth a thousand words.
We used this idea earlier, in Section 2.6, to describe rotations, reflections, and projections of the plane R2.
We now apply the same techniques to 3-space to examine similar transformations of R3. Moreover, the
method enables us to completely describe all lines and planes in space.

Vectors in R3

Introduce a coordinate system in 3-dimensional space in the usual way. First choose a point O called the
origin, then choose three mutually perpendicular lines through O, called the x, y, and z axes, and establish
a number scale on each axis with zero at the origin. Given a point P in 3-space we associate three numbers
x, y, and z with P, as described in Figure 4.1.1. These numbers are called the coordinates of P, and we
denote the point as (x, y, z), or P(x, y, z) to emphasize the label P. The result is called a cartesian1

coordinate system for 3-space, and the resulting description of 3-space is called cartesian geometry.

O

P(x, y, z)

P0(x, y, 0)

v =




x
y
z





x

y

z

Figure 4.1.1

As in the plane, we introduce vectors by identifying each point

P(x, y, z) with the vector v =




x

y

z



 in R3, represented by the arrow

from the origin to P as in Figure 4.1.1. Informally, we say that the point P

has vector v, and that vector v has point P. In this way 3-space is identi-
fied with R3, and this identification will be made throughout this chapter,
often without comment. In particular, the terms “vector” and “point” are
interchangeable.2 The resulting description of 3-space is called vector

geometry. Note that the origin is 0 =




0
0
0



.

1Named after René Descartes who introduced the idea in 1637.
2Recall that we defined Rn as the set of all ordered n-tuples of real numbers, and reserved the right to denote them as rows

or as columns.
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Length and Direction

We are going to discuss two fundamental geometric properties of vectors in R3: length and direction. First,
if v is a vector with point P, the length ‖v‖ of vector v is defined to be the distance from the origin to P,
that is the length of the arrow representing v. The following properties of length will be used frequently.

Theorem 4.1.1

Let v =




x

y

z



 be a vector.

1. ‖v‖=
√

x2 + y2 + z2. 3

2. v = 0 if and only if ‖v‖= 0

3. ‖av‖= |a|‖v‖ for all scalars a. 4
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Figure 4.1.2

Proof. Let v have point P(x, y, z).

1. In Figure 4.1.2, ‖v‖ is the hypotenuse of the right triangle OQP, and
so ‖v‖2 = h2+z2 by Pythagoras’ theorem.5 But h is the hypotenuse
of the right triangle ORQ, so h2 = x2 + y2. Now (1) follows by
eliminating h2 and taking positive square roots.

2. If ‖v‖ = 0, then x2 + y2 + z2 = 0 by (1). Because squares of real
numbers are nonnegative, it follows that x = y = z = 0, and hence
that v = 0. The converse is because ‖0‖= 0.

3. We have av =
[

ax ay az
]T so (1) gives

‖av‖2 = (ax)2 +(ay)2 +(az)2 = a2‖v‖2

Hence ‖av‖=
√

a2‖v‖, and we are done because
√

a2 = |a| for any real number a.

Of course the R2-version of Theorem 4.1.1 also holds.

3When we write
√

p we mean the positive square root of p.
4Recall that the absolute value |a| of a real number is defined by |a|=

{
a if a≥ 0
−a if a < 0

.
5Pythagoras’ theorem states that if a and b are sides of right triangle with hypotenuse c, then a2 +b2 = c2. A proof is given

at the end of this section.
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Example 4.1.1

If v =




2
−1

3



 then ‖v‖=
√

4+1+9 =
√

14. Similarly if v =

[
3
−4

]
in 2-space then

‖v‖=
√

9+16 = 5.

When we view two nonzero vectors as arrows emanating from the origin, it is clear geometrically
what we mean by saying that they have the same or opposite direction. This leads to a fundamental new
description of vectors.

Theorem 4.1.2

Let v %= 0 and w %= 0 be vectors in R3. Then v = w as matrices if and only if v and w have the same
direction and the same length.6

v

w
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Q
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y

z

Figure 4.1.3

Proof. If v = w, they clearly have the same direction and length. Conversely,
let v and w be vectors with points P(x, y, z) and Q(x1, y1, z1) respectively. If
v and w have the same length and direction then, geometrically, P and Q must
be the same point (see Figure 4.1.3). Hence x = x1, y = y1, and z = z1, that is

v =




x

y

z



=




x1
y1
z1



= w.

A characterization of a vector in terms of its length and direction only is called an intrinsic description
of the vector. The point to note is that such a description does not depend on the choice of coordinate
system in R3. Such descriptions are important in applications because physical laws are often stated in
terms of vectors, and these laws cannot depend on the particular coordinate system used to describe the
situation.

Geometric Vectors

If A and B are distinct points in space, the arrow from A to B has length and direction.

−→
AB

O

A

B

x

y

z

Figure 4.1.4

6It is Theorem 4.1.2 that gives vectors their power in science and engineering because many physical quantities are deter-
mined by their length and magnitude (and are called vector quantities). For example, saying that an airplane is flying at 200
km/h does not describe where it is going; the direction must also be specified. The speed and direction comprise the velocity

of the airplane, a vector quantity.
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Hence:

Definition 4.1 Geometric Vectors

Suppose that A and B are any two points in R3. In Figure 4.1.4 the line segment from A to B is
denoted

−→
AB and is called the geometric vector from A to B. Point A is called the tail of

−→
AB, B is

called the tip of
−→
AB, and the length of

−→
AB is denoted ‖

−→
AB‖.

O

A(3, 1)

B(2, 3)

P(1, 0)

Q(0, 2)

x

y

Figure 4.1.5

Note that if v is any vector in R3 with point P then v =
−→
OP is itself

a geometric vector where O is the origin. Referring to
−→
AB as a “vector”

seems justified by Theorem 4.1.2 because it has a direction (from A to B)
and a length ‖

−→
AB‖. However there appears to be a problem because two

geometric vectors can have the same length and direction even if the tips
and tails are different. For example

−→
AB and

−→
PQ in Figure 4.1.5 have the

same length
√

5 and the same direction (1 unit left and 2 units up) so, by
Theorem 4.1.2, they are the same vector! The best way to understand this
apparent paradox is to see

−→
AB and

−→
PQ as different representations of the

same7 underlying vector
[
−1

2

]
. Once it is clarified, this phenomenon is

a great benefit because, thanks to Theorem 4.1.2, it means that the same
geometric vector can be positioned anywhere in space; what is important is the length and direction, not
the location of the tip and tail. This ability to move geometric vectors about is very useful as we shall soon
see.

The Parallelogram Law

v
v+w

w
A

P

Q

P

Figure 4.1.6

We now give an intrinsic description of the sum of two vectors v and w in R3,
that is a description that depends only on the lengths and directions of v and w

and not on the choice of coordinate system. Using Theorem 4.1.2 we can think
of these vectors as having a common tail A. If their tips are P and Q respectively,
then they both lie in a plane P containing A, P, and Q, as shown in Figure 4.1.6.
The vectors v and w create a parallelogram8 in P , shaded in Figure 4.1.6, called
the parallelogram determined by v and w.

If we now choose a coordinate system in the plane P with A as origin, then the parallelogram law in
the plane (Section 2.6) shows that their sum v+w is the diagonal of the parallelogram they determine with
tail A. This is an intrinsic description of the sum v+w because it makes no reference to coordinates. This
discussion proves:

7Fractions provide another example of quantities that can be the same but look different. For example 6
9 and 14

21 certainly
appear different, but they are equal fractions—both equal 2

3 in “lowest terms”.
8Recall that a parallelogram is a four-sided figure whose opposite sides are parallel and of equal length.
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The Parallelogram Law

In the parallelogram determined by two vectors v and w, the vector v+w is the diagonal with the
same tail as v and w.

v

w

v+w
P

(a) w

v
v+w

(b)

v

w

w+v

(c)

Figure 4.1.7

Because a vector can be positioned with its tail at any point, the parallelo-
gram law leads to another way to view vector addition. In Figure 4.1.7(a) the
sum v+w of two vectors v and w is shown as given by the parallelogram law. If
w is moved so its tail coincides with the tip of v (Figure 4.1.7(b)) then the sum
v+w is seen as “first v and then w. Similarly, moving the tail of v to the tip of w

shows in Figure 4.1.7(c) that v+w is “first w and then v.” This will be referred
to as the tip-to-tail rule, and it gives a graphic illustration of why v+w =w+v.

Since
−→
AB denotes the vector from a point A to a point B, the tip-to-tail rule

takes the easily remembered form

−→
AB+

−→
BC =

−→
AC

for any points A, B, and C. The next example uses this to derive a theorem in
geometry without using coordinates.

Example 4.1.2

Show that the diagonals of a parallelogram bisect each other.

A

B

C

D

EM

Solution. Let the parallelogram have vertices A, B, C, and D,
as shown; let E denote the intersection of the two diagonals;
and let M denote the midpoint of diagonal AC. We must show
that M = E and that this is the midpoint of diagonal BD. This
is accomplished by showing that

−→
BM =

−−→
MD. (Then the fact

that these vectors have the same direction means that M = E,
and the fact that they have the same length means that M = E

is the midpoint of BD.) Now
−→
AM =

−→
MC because M is the midpoint

of AC, and
−→
BA =

−→
CD because the figure is a parallelogram. Hence

−→
BM =

−→
BA+

−→
AM =

−→
CD+

−→
MC =

−→
MC+

−→
CD =

−−→
MD

where the first and last equalities use the tip-to-tail rule of vector addition.

u
v

w

u

v

w

u+v+w

Figure 4.1.8

One reason for the importance of the tip-to-tail rule is that it means two
or more vectors can be added by placing them tip-to-tail in sequence. This
gives a useful “picture” of the sum of several vectors, and is illustrated for
three vectors in Figure 4.1.8 where u+v+w is viewed as first u, then v,
then w.

There is a simple geometrical way to visualize the (matrix) difference

v−w of two vectors. If v and w are positioned so that they have a common
tail A (see Figure 4.1.9), and if B and C are their respective tips, then the
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tip-to-tail rule gives w+
−→
CB = v. Hence v−w =

−→
CB is the vector from the tip of w to the tip of v. Thus

both v−w and v+w appear as diagonals in the parallelogram determined by v and w (see Figure 4.1.9).
We record this for reference.

w

v
−→
CB

A

B

C

w

v

v−w v+w

Figure 4.1.9

Theorem 4.1.3

If v and w have a common tail, then v−w is the vector from the tip
of w to the tip of v.

One of the most useful applications of vector subtraction is that it gives
a simple formula for the vector from one point to another, and for the
distance between the points.

Theorem 4.1.4

Let P1(x1, y1, z1) and P2(x2, y2, z2) be two points. Then:

1.
−→
P1P2 =




x2− x1
y2− y1
z2− z1



.

2. The distance between P1 and P2 is
√
(x2− x1)2 +(y2− y1)2 +(z2− z1)2.

v1

−−→
P1P2

v2

P1

P2

O

Figure 4.1.10

Proof. If O is the origin, write

v1 =
−→
OP1 =




x1
y1
z1



 and v2 =
−→
OP2 =




x2
y2
z2





as in Figure 4.1.10.

Then Theorem 4.1.3 gives
−→
P1P2 = v2− v1, and (1) follows. But the

distance between P1 and P2 is ‖−→P1P2‖, so (2) follows from (1) and Theo-
rem 4.1.1.

Of course the R2-version of Theorem 4.1.4 is also valid: If P1(x1, y1) and P2(x2, y2) are points in R2,

then
−→
P1P2 =

[
x2− x1
y2− y1

]
, and the distance between P1 and P2 is

√
(x2− x1)2 +(y2− y1)2.

Example 4.1.3

The distance between P1(2, −1, 3) and P2(1, 1, 4) is
√

(−1)2 +(2)2 +(1)2 =
√

6, and the vector

from P1 to P2 is
−→
P1P2 =




−1

2
1



.
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As for the parallelogram law, the intrinsic rule for finding the length and direction of a scalar multiple
of a vector in R3 follows easily from the same situation in R2.

Scalar Multiple Law

If a is a real number and v %= 0 is a vector then:

1. The length of av is ‖av‖= |a|‖v‖.

2. If9av %= 0, the direction of av is
{

the same as v if a > 0,
opposite to v if a < 0.

Proof.

1. This is part of Theorem 4.1.1.

2. Let O denote the origin in R3, let v have point P, and choose any plane containing O and P. If we
set up a coordinate system in this plane with O as origin, then v =

−→
OP so the result in (2) follows

from the scalar multiple law in the plane (Section 2.6).

Figure 4.1.11 gives several examples of scalar multiples of a vector v.

v
2v

1
2 v

(−2)v

(− 1
2 )v

Figure 4.1.11

O

P

L

− 1
2p

1
2p

p
3
2p

Figure 4.1.12

Consider a line L through the origin, let P be any point on L other than
the origin O, and let p =

−→
OP. If t %= 0, then tp is a point on L because it

has direction the same or opposite as that of p. Moreover t > 0 or t < 0
according as the point tp lies on the same or opposite side of the origin as
P. This is illustrated in Figure 4.1.12.

A vector u is called a unit vector if ‖u‖= 1. Then i =




1
0
0



,

j =




0
1
0



, and k =




0
0
1



 are unit vectors, called the coordinate vectors.

We discuss them in more detail in Section 4.2.

Example 4.1.4

If v %= 0 show that 1
‖v‖v is the unique unit vector in the same direction as v.

Solution. The vectors in the same direction as v are the scalar multiples av where a > 0. But
‖av‖= |a|‖v‖= a‖v‖ when a > 0, so av is a unit vector if and only if a = 1

‖v‖ .

The next example shows how to find the coordinates of a point on the line segment between two given
points. The technique is important and will be used again below.

9Since the zero vector has no direction, we deal only with the case av %= 0.
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Example 4.1.5

Let p1 and p2 be the vectors of two points P1 and P2. If M is the point one third the way from P1 to
P2, show that the vector m of M is given by

m = 2
3p1 +

1
3p2

Conclude that if P1 = P1(x1, y1, z1) and P2 = P2(x2, y2, z2), then M has coordinates

M = M
(2

3x1 +
1
3x2, 2

3y1 +
1
3y2, 2

3z1 +
1
3z2
)

p1

m

p2

O

P1

M

P2

Solution. The vectors p1, p2, and m are shown in the diagram. We
have

−−→
P1M = 1

3
−→
P1P2 because

−−→
P1M is in the same direction as

−→
P1P2 and

1
3 as long. By Theorem 4.1.3 we have

−→
P1P2 = p2−p1, so tip-to-tail

addition gives

m = p1 +
−−→
P1M = p1 +

1
3(p2−p1) =

2
3p1 +

1
3p2

as required. For the coordinates, we have p1 =




x1
y1
z1



 and p2 =




x2
y2
z2



,

so

m = 2
3




x1
y1
z1



+ 1
3




x2
y2
z2



=





2
3x1 +

1
3x2

2
3y1 +

1
3y2

2
3z1 +

1
3z2





by matrix addition. The last statement follows.

Note that in Example 4.1.5 m = 2
3p1 +

1
3p2 is a “weighted average” of p1 and p2 with more weight on p1

because m is closer to p1.

The point M halfway between points P1 and P2 is called the midpoint between these points. In the
same way, the vector m of M is

m = 1
2p1 +

1
2p2 =

1
2(p1 +p2)

as the reader can verify, so m is the “average” of p1 and p2 in this case.

Example 4.1.6

Show that the midpoints of the four sides of any quadrilateral are the vertices of a parallelogram.
Here a quadrilateral is any figure with four vertices and straight sides.

Solution. Suppose that the vertices of the quadrilateral are A, B, C, and D (in that order) and that
E, F , G, and H are the midpoints of the sides as shown in the diagram. It suffices to show
−→
EF =

−→
HG (because then sides EF and HG are parallel and of equal length).
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A

B

C

D

E

F

G

H

Now the fact that E is the midpoint of AB means that
−→
EB = 1

2
−→
AB.

Similarly,
−→
BF = 1

2
−→
BC, so

−→
EF =

−→
EB+

−→
BF = 1

2
−→
AB+ 1

2
−→
BC = 1

2(
−→
AB+

−→
BC) = 1

2
−→
AC

A similar argument shows that
−→
HG = 1

2
−→
AC too, so

−→
EF =

−→
HG

as required.

Definition 4.2 Parallel Vectors in R3

Two nonzero vectors are called parallel if they have the same or opposite direction.

Many geometrical propositions involve this notion, so the following theorem will be referred to repeat-
edly.

Theorem 4.1.5

Two nonzero vectors v and w are parallel if and only if one is a scalar multiple of the other.

Proof. If one of them is a scalar multiple of the other, they are parallel by the scalar multiple law.

Conversely, assume that v and w are parallel and write d = ‖v‖
‖w‖ for convenience. Then v and w have

the same or opposite direction. If they have the same direction we show that v = dw by showing that v

and dw have the same length and direction. In fact, ‖dw‖ = |d|‖w‖ = ‖v‖ by Theorem 4.1.1; as to the
direction, dw and w have the same direction because d > 0, and this is the direction of v by assumption.
Hence v = dw in this case by Theorem 4.1.2. In the other case, v and w have opposite direction and a
similar argument shows that v =−dw. We leave the details to the reader.

Example 4.1.7

Given points P(2, −1, 4), Q(3, −1, 3), A(0, 2, 1), and B(1, 3, 0), determine if
−→
PQ and

−→
AB are

parallel.

Solution. By Theorem 4.1.3,
−→
PQ = (1, 0, −1) and

−→
AB = (1, 1, −1). If

−→
PQ = t

−→
AB then

(1, 0, −1) = (t, t, −t), so 1 = t and 0 = t, which is impossible. Hence
−→
PQ is not a scalar multiple

of
−→
AB, so these vectors are not parallel by Theorem 4.1.5.
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Lines in Space

These vector techniques can be used to give a very simple way of describing straight lines in space. In
order to do this, we first need a way to specify the orientation of such a line, much as the slope does in the
plane.

Definition 4.3 Direction Vector of a Line

With this in mind, we call a nonzero vector d %= 0 a direction vector for the line if it is parallel to
−→
AB for some pair of distinct points A and B on the line.

p0

P0P

p

d

Origin

P0
P

Figure 4.1.13

Of course it is then parallel to
−→
CD for any distinct points C and D on the line.

In particular, any nonzero scalar multiple of d will also serve as a direction
vector of the line.

We use the fact that there is exactly one line that passes through a par-

ticular point P0(x0, y0, z0) and has a given direction vector d =




a

b

c



. We

want to describe this line by giving a condition on x, y, and z that the point

P(x, y, z) lies on this line. Let p0 =




x0
y0
z0



 and p=




x

y

z



 denote the vectors

of P0 and P, respectively (see Figure 4.1.13). Then

p = p0 +
−→
P0P

Hence P lies on the line if and only if
−→
P0P is parallel to d—that is, if and only if

−→
P0P = td for some scalar

t by Theorem 4.1.5. Thus p is the vector of a point on the line if and only if p = p0 + td for some scalar t.
This discussion is summed up as follows.

Vector Equation of a Line

The line parallel to d %= 0 through the point with vector p0 is given by

p = p0 + td t any scalar

In other words, the point P with vector p is on this line if and only if a real number t exists such
that p = p0 + td.

In component form the vector equation becomes



x

y

z



=




x0
y0
z0



+ t




a

b

c





Equating components gives a different description of the line.
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Parametric Equations of a Line

The line through P0(x0, y0, z0) with direction vector d =




a

b

c



 %= 0 is given by

x = x0 + ta

y = y0 + tb t any scalar
z = z0 + tc

In other words, the point P(x, y, z) is on this line if and only if a real number t exists such that
x = x0 + ta, y = y0 + tb, and z = z0 + tc.

Example 4.1.8

Find the equations of the line through the points P0(2, 0, 1) and P1(4, −1, 1).

Solution. Let d =
−→
P0P1 =




2
1
0



 denote the vector from P0 to P1. Then d is parallel to the line (P0

and P1 are on the line), so d serves as a direction vector for the line. Using P0 as the point on the
line leads to the parametric equations

x = 2+2t

y =−t t a parameter
z = 1

Note that if P1 is used (rather than P0), the equations are

x = 4+2s

y =−1− s s a parameter
z = 1

These are different from the preceding equations, but this is merely the result of a change of
parameter. In fact, s = t−1.

Example 4.1.9

Find the equations of the line through P0(3, −1, 2) parallel to the line with equations

x =−1+2t

y = 1+ t

z =−3+4t
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Solution. The coefficients of t give a direction vector d =




2
1
4



 of the given line. Because the

line we seek is parallel to this line, d also serves as a direction vector for the new line. It passes
through P0, so the parametric equations are

x = 3+2t

y =−1+ t

z = 2+4t

Example 4.1.10

Determine whether the following lines intersect and, if so, find the point of intersection.

x = 1−3t x =−1+ s

y = 2+5t y = 3−4s

z = 1+ t z = 1− s

Solution. Suppose P(x, y, z) with vector p lies on both lines. Then



1−3t

2+5t

1+ t



=




x

y

z



=




−1+ s

3−4s

1− s



 for some t and s,

where the first (second) equation is because P lies on the first (second) line. Hence the lines
intersect if and only if the three equations

1−3t =−1+ s

2+5t = 3−4s

1+ t = 1− s

have a solution. In this case, t = 1 and s =−1 satisfy all three equations, so the lines do intersect
and the point of intersection is

p =




1−3t

2+5t

1+ t



=




−2

7
2





using t = 1. Of course, this point can also be found from p =




−1+ s

3−4s

1− s



 using s =−1.
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Example 4.1.11

Show that the line through P0(x0, y0) with slope m has direction vector d =

[
1
m

]
and equation

y− y0 = m(x− x0). This equation is called the point-slope formula.

P0(x0, y0)

P1(x1, y1)

x0 x1 = x0 +1O
x

y

Solution. Let P1(x1, y1) be the point on the line one unit
to the right of P0 (see the diagram). Hence x1 = x0 +1.
Then d =

−→
P0P1 serves as direction vector of the line, and

d =

[
x1− x0
y1− y0

]
=

[
1

y1− y0

]
. But the slope m can be computed

as follows:
m = y1−y0

x1−x0
= y1−y0

1 = y1− y0

Hence d =

[
1
m

]
and the parametric equations are x = x0 + t,

y = y0 +mt. Eliminating t gives y− y0 = mt = m(x− x0), as asserted.

Note that the vertical line through P0(x0, y0) has a direction vector d =

[
0
1

]
that is not of the form

[
1
m

]
for any m. This result confirms that the notion of slope makes no sense in this case. However, the

vector method gives parametric equations for the line:

x = x0

y = y0 + t

Because y is arbitrary here (t is arbitrary), this is usually written simply as x = x0.

Pythagoras’ Theorem

c

b

a

A

B

C

D
p

q

Figure 4.1.14

The Pythagorean theorem was known earlier, but Pythagoras (c. 550 B.C.)
is credited with giving the first rigorous, logical, deductive proof of the
result. The proof we give depends on a basic property of similar triangles:
ratios of corresponding sides are equal.

Theorem 4.1.6: Pythagoras’ Theorem

Given a right-angled triangle with hypotenuse c and sides a and b, then a2 +b2 = c2.

Proof. Let A, B, and C be the vertices of the triangle as in Figure 4.1.14. Draw a perpendicular line from
C to the point D on the hypotenuse, and let p and q be the lengths of BD and DA respectively. Then DBC
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and CBA are similar triangles so p
a = a

c . This means a2 = pc. In the same way, the similarity of DCA and
CBA gives q

b = b
c , whence b2 = qc. But then

a2 +b2 = pc+qc = (p+q)c = c2

because p+q = c. This proves Pythagoras’ theorem10.

Exercises for 4.1

Exercise 4.1.1 Compute ‖v‖ if v equals:



2
−1

2



a.




1
−1

2



b.




1
0
−1



c.




−1

0
2



d.

2




1
−1

2



e. −3




1
1
2



f.

Exercise 4.1.2 Find a unit vector in the direction of:



7
−1

5



a.




−2
−1

2



b.

Exercise 4.1.3

a. Find a unit vector in the direction from


3
−1

4



 to




1
3
5



.

b. If u %= 0, for which values of a is au a unit vector?

Exercise 4.1.4 Find the distance between the following
pairs of points.




3
−1

0



 and




2
−1

1



a.




2
−1

2



 and




2
0
1



b.




−3

5
2



 and




1
3
3



c.




4
0
−2



 and




3
2
0



d.

Exercise 4.1.5 Use vectors to show that the line joining
the midpoints of two sides of a triangle is parallel to the
third side and half as long.

Exercise 4.1.6 Let A, B, and C denote the three vertices
of a triangle.

a. If E is the midpoint of side BC, show that

−→
AE = 1

2(
−→
AB+

−→
AC)

b. If F is the midpoint of side AC, show that

−→
FE = 1

2
−→
AB

Exercise 4.1.7 Determine whether u and v are parallel
in each of the following cases.

a. u =




−3
−6

3



; v =




5

10
−5





b. u =




3
−6

3



; v =




−1

2
−1





c. u =




1
0
1



; v =




−1

0
1





d. u =




2
0
−1



; v =




−8

0
4





10There is an intuitive geometrical proof of Pythagoras’ theorem in Example B.3.
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Exercise 4.1.8 Let p and q be the vectors of points P

and Q, respectively, and let R be the point whose vector
is p+q. Express the following in terms of p and q.

−→
QPa.

−→
QRb.

−→
RPc.

−→
RO where O is the origind.

Exercise 4.1.9 In each case, find
−→
PQ and ‖

−→
PQ‖.

a. P(1, −1, 3), Q(3, 1, 0)

b. P(2, 0, 1), Q(1, −1, 6)

c. P(1, 0, 1), Q(1, 0, −3)

d. P(1, −1, 2), Q(1, −1, 2)

e. P(1, 0, −3), Q(−1, 0, 3)

f. P(3, −1, 6), Q(1, 1, 4)

Exercise 4.1.10 In each case, find a point Q such that
−→
PQ has (i) the same direction as v; (ii) the opposite direc-
tion to v.

a. P(−1, 2, 2), v =




1
3
1





b. P(3, 0, −1), v =




2
−1

3





Exercise 4.1.11 Let u =




3
−1

0



, v =




4
0
1



, and

w =




−1

1
5



. In each case, find x such that:

a. 3(2u+x)+w = 2x−v

b. 2(3v−x) = 5w+u−3x

Exercise 4.1.12 Let u =




1
1
2



, v =




0
1
2



, and

w=




1
0
−1



. In each case, find numbers a, b, and c such

that x = au+bv+ cw.

x =




2
−1

6



a. x =




1
3
0



b.

Exercise 4.1.13 Let u =




3
−1

0



, v =




4
0
1



, and

z =




1
1
1



. In each case, show that there are no num-

bers a, b, and c such that:

a. au+bv+ cz =




1
2
1





b. au+bv+ cz =




5
6
−1





Exercise 4.1.14 Given P1(2, 1, −2) and P2(1, −2, 0).
Find the coordinates of the point P:

a. 1
5 the way from P1 to P2

b. 1
4 the way from P2 to P1

Exercise 4.1.15 Find the two points trisecting the seg-
ment between P(2, 3, 5) and Q(8, −6, 2).

Exercise 4.1.16 Let P1(x1, y1, z1) and P2(x2, y2, z2) be
two points with vectors p1 and p2, respectively. If r and s

are positive integers, show that the point P lying r
r+s the

way from P1 to P2 has vector

p =
(

s
r+s

)
p1 +

(
r

r+s

)
p2

Exercise 4.1.17 In each case, find the point Q:

a.
−→
PQ =




2
0
−3



 and P = P(2, −3, 1)

b.
−→
PQ =




−1

4
7



 and P = P(1, 3, −4)
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Exercise 4.1.18 Let u =




2
0
−4



 and v =




2
1
−2



. In

each case find x:

a. 2u−‖v‖v = 3
2(u−2x)

b. 3u+7v = ‖u‖2(2x+v)

Exercise 4.1.19 Find all vectors u that are parallel to

v =




3
−2

1



 and satisfy ‖u‖= 3‖v‖.

Exercise 4.1.20 Let P, Q, and R be the vertices of a par-
allelogram with adjacent sides PQ and PR. In each case,
find the other vertex S.

a. P(3, −1, −1), Q(1, −2, 0), R(1, −1, 2)

b. P(2, 0, −1), Q(−2, 4, 1), R(3, −1, 0)

Exercise 4.1.21 In each case either prove the statement
or give an example showing that it is false.

a. The zero vector 0 is the only vector of length 0.

b. If ‖v−w‖= 0, then v = w.

c. If v =−v, then v = 0.

d. If ‖v‖= ‖w‖, then v = w.

e. If ‖v‖= ‖w‖, then v =±w.

f. If v = tw for some scalar t, then v and w have the
same direction.

g. If v, w, and v+w are nonzero, and v and v+w

parallel, then v and w are parallel.

h. ‖−5v‖=−5‖v‖, for all v.

i. If ‖v‖= ‖2v‖, then v = 0.

j. ‖v+w‖= ‖v‖+‖w‖, for all v and w.

Exercise 4.1.22 Find the vector and parametric equa-
tions of the following lines.

a. The line parallel to




2
−1

0



 and passing through

P(1, −1, 3).

b. The line passing through P(3, −1, 4) and
Q(1, 0, −1).

c. The line passing through P(3, −1, 4) and
Q(3, −1, 5).

d. The line parallel to




1
1
1



 and passing through

P(1, 1, 1).

e. The line passing through P(1, 0, −3) and parallel
to the line with parametric equations x =−1+2t,
y = 2− t, and z = 3+3t.

f. The line passing through P(2, −1, 1) and paral-
lel to the line with parametric equations x = 2− t,
y = 1, and z = t.

g. The lines through P(1, 0, 1) that meet the line

with vector equation p =




1
2
0



+ t




2
−1

2



 at

points at distance 3 from P0(1, 2, 0).

Exercise 4.1.23 In each case, verify that the points P

and Q lie on the line.

a. x = 3−4t P(−1, 3, 0), Q(11, 0, 3)
y = 2+ t

z = 1− t

b. x = 4− t P(2, 3, −3), Q(−1, 3, −9)
y = 3
z = 1−2t

Exercise 4.1.24 Find the point of intersection (if any)
of the following pairs of lines.

a. x = 3+ t x = 4+2s

y = 1−2t y = 6+3s

z = 3+3t z = 1+ s

b.
x = 1− t x = 2s

y = 2+2t y = 1+ s

z =−1+3t z = 3

c.




x

y

z



=




3
−1

2



+ t




1
1
−1








x

y

z



=




1
1
−2



+ s




2
0
3
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d.




x

y

z



=




4
−1

5



+ t




1
0
1








x

y

z



=




2
−7
12



+ s




0
−2

3





Exercise 4.1.25 Show that if a line passes through the
origin, the vectors of points on the line are all scalar mul-
tiples of some fixed nonzero vector.

Exercise 4.1.26 Show that every line parallel to the z

axis has parametric equations x = x0, y = y0, z = t for
some fixed numbers x0 and y0.

Exercise 4.1.27 Let d =




a

b

c



 be a vector where a,

b, and c are all nonzero. Show that the equations of the
line through P0(x0, y0, z0) with direction vector d can be
written in the form

x−x0
a = y−y0

b = z−z0
c

This is called the symmetric form of the equations.

Exercise 4.1.28 A parallelogram has sides AB, BC, CD,
and DA. Given A(1, −1, 2), C(2, 1, 0), and the midpoint
M(1, 0, −3) of AB, find

−→
BD.

Exercise 4.1.29 Find all points C on the line through
A(1, −1, 2) and B = (2, 0, 1) such that ‖

−→
AC‖= 2‖

−→
BC‖.

Exercise 4.1.30 Let A, B, C, D, E , and F be the ver-
tices of a regular hexagon, taken in order. Show that
−→
AB+

−→
AC+

−→
AD+

−→
AE +

−→
AF = 3

−→
AD.

Exercise 4.1.31

a. Let P1, P2, P3, P4, P5, and P6 be six points equally
spaced on a circle with centre C. Show that

−→
CP1 +

−→
CP2 +

−→
CP3 +

−→
CP4 +

−→
CP5 +

−→
CP6 = 0

b. Show that the conclusion in part (a) holds for any
even set of points evenly spaced on the circle.

c. Show that the conclusion in part (a) holds for three

points.

d. Do you think it works for any finite set of points
evenly spaced around the circle?

Exercise 4.1.32 Consider a quadrilateral with vertices
A, B, C, and D in order (as shown in the diagram).

A B

CD

If the diagonals AC and BD bisect each other, show
that the quadrilateral is a parallelogram. (This is the con-
verse of Example 4.1.2.) [Hint: Let E be the intersec-
tion of the diagonals. Show that

−→
AB =

−→
DC by writing

−→
AB =

−→
AE +

−→
EB.]

Exercise 4.1.33 Consider the parallelogram ABCD (see
diagram), and let E be the midpoint of side AD.

A

B

C

D

E

F

Show that BE and AC trisect each other; that is, show
that the intersection point is one-third of the way from E

to B and from A to C. [Hint: If F is one-third of the
way from A to C, show that 2

−→
EF =

−→
FB and argue as in

Example 4.1.2.]

Exercise 4.1.34 The line from a vertex of a triangle to
the midpoint of the opposite side is called a median of
the triangle. If the vertices of a triangle have vectors
u, v, and w, show that the point on each median that
is 1

3 the way from the midpoint to the vertex has vec-
tor 1

3(u+ v+w). Conclude that the point C with vector
1
3(u+ v+w) lies on all three medians. This point C is
called the centroid of the triangle.

Exercise 4.1.35 Given four noncoplanar points in space,
the figure with these points as vertices is called a tetra-

hedron. The line from a vertex through the centroid (see
previous exercise) of the triangle formed by the remain-
ing vertices is called a median of the tetrahedron. If u, v,
w, and x are the vectors of the four vertices, show that the
point on a median one-fourth the way from the centroid
to the vertex has vector 1

4(u+v+w+x). Conclude that
the four medians are concurrent.
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4.2 Projections and Planes

P

Q

Figure 4.2.1

Any student of geometry soon realizes that the notion of perpendicular
lines is fundamental. As an illustration, suppose a point P and a plane
are given and it is desired to find the point Q that lies in the plane and is
closest to P, as shown in Figure 4.2.1. Clearly, what is required is to find
the line through P that is perpendicular to the plane and then to obtain Q

as the point of intersection of this line with the plane. Finding the line
perpendicular to the plane requires a way to determine when two vectors
are perpendicular. This can be done using the idea of the dot product of
two vectors.

The Dot Product and Angles

Definition 4.4 Dot Product in R3

Given vectors v =




x1
y1
z1



 and w =




x2
y2
z2



, their dot product v ·w is a number defined

v ·w = x1x2 + y1y2 + z1z2 = vT w

Because v ·w is a number, it is sometimes called the scalar product of v and w.11

Example 4.2.1

If v =




2
−1

3



 and w =




1
4
−1



, then v ·w = 2 ·1+(−1) ·4+3 · (−1) =−5.

The next theorem lists several basic properties of the dot product.

Theorem 4.2.1

Let u, v, and w denote vectors in R3 (or R2).

1. v ·w is a real number.

2. v ·w = w ·v.

3. v ·0 = 0 = 0 ·v.

4. v ·v = ‖v‖2.

11Similarly, if v =

[
x1
y1

]
and w =

[
x2
y2

]
in R2, then v ·w = x1x2 + y1y2.
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5. (kv) ·w = k(w ·v) = v · (kw) for all scalars k.

6. u · (v±w) = u ·v±u ·w

Proof. (1), (2), and (3) are easily verified, and (4) comes from Theorem 4.1.1. The rest are properties of
matrix arithmetic (because w ·v = vT w), and are left to the reader.

The properties in Theorem 4.2.1 enable us to do calculations like

3u · (2v−3w+4z) = 6(u ·v)−9(u ·w)+12(u · z)

and such computations will be used without comment below. Here is an example.

Example 4.2.2

Verify that ‖v−3w‖2 = 1 when ‖v‖= 2, ‖w‖= 1, and v ·w = 2.

Solution. We apply Theorem 4.2.1 several times:

‖v−3w‖2 = (v−3w) · (v−3w)

= v · (v−3w)−3w · (v−3w)

= v ·v−3(v ·w)−3(w ·v)+9(w ·w)

= ‖v‖2−6(v ·w)+9‖w‖2

= 4−12+9 = 1

There is an intrinsic description of the dot product of two nonzero vectors in R3. To understand it we
require the following result from trigonometry.

Law of Cosines

If a triangle has sides a, b, and c, and if θ is the interior angle opposite c then

c2 = a2 +b2−2abcosθ

a
c

b

p

θ q b−q

Figure 4.2.2

Proof. We prove it when is θ acute, that is 0 ≤ θ < π
2 ; the obtuse case

is similar. In Figure 4.2.2 we have p = asinθ and q = acosθ . Hence
Pythagoras’ theorem gives

c2 = p2 +(b−q)2 = a2 sin2 θ +(b−acosθ)2

= a2(sin2 θ + cos2 θ)+b2−2abcosθ

The law of cosines follows because sin2 θ + cos2 θ = 1 for any angle θ .
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v

w

θ

θ obtuse

v

w

θ

θ acute

Figure 4.2.3

Note that the law of cosines reduces to Pythagoras’ theorem if θ is a right
angle (because cos π

2 = 0).

Now let v and w be nonzero vectors positioned with a common tail as
in Figure 4.2.3. Then they determine a unique angle θ in the range

0≤ θ ≤ π

This angle θ will be called the angle between v and w. Figure 4.2.3 il-
lustrates when θ is acute (less than π

2 ) and obtuse (greater than π
2 ). Clearly

v and w are parallel if θ is either 0 or π . Note that we do not define the
angle between v and w if one of these vectors is 0.

The next result gives an easy way to compute the angle between two
nonzero vectors using the dot product.

Theorem 4.2.2

Let v and w be nonzero vectors. If θ is the angle between v and w, then

v ·w = ‖v‖‖w‖cosθ

v

w

v−w

θ

Figure 4.2.4

Proof. We calculate ‖v−w‖2 in two ways. First apply the law of cosines
to the triangle in Figure 4.2.4 to obtain:

‖v−w‖2 = ‖v‖2 +‖w‖2−2‖v‖‖w‖cosθ

On the other hand, we use Theorem 4.2.1:

‖v−w‖2 = (v−w) · (v−w)

= v ·v−v ·w−w ·v+w ·w
= ‖v‖2−2(v ·w)+‖w‖2

Comparing these we see that −2‖v‖‖w‖cosθ =−2(v ·w), and the result follows.

If v and w are nonzero vectors, Theorem 4.2.2 gives an intrinsic description of v ·w because ‖v‖, ‖w‖,
and the angle θ between v and w do not depend on the choice of coordinate system. Moreover, since ‖v‖
and ‖w‖ are nonzero (v and w are nonzero vectors), it gives a formula for the cosine of the angle θ :

cosθ = v·w
‖v‖‖w‖ (4.1)

Since 0≤ θ ≤ π , this can be used to find θ .

Example 4.2.3

Compute the angle between u =




−1

1
2



 and v =




2
1
−1



.
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2π
3

(
−1
2 ,

√
3

2

)

−1
2

O
x

y
Solution. Compute cosθ = v·w

‖v‖‖w‖ =
−2+1−2√

6
√

6
=−1

2 . Now recall
that cosθ and sinθ are defined so that (cosθ , sinθ ) is the point on
the unit circle determined by the angle θ (drawn counterclockwise,
starting from the positive x axis). In the present case, we know
that cosθ =−1

2 and that 0≤ θ ≤ π . Because cos π
3 = 1

2 , it follows
that θ = 2π

3 (see the diagram).

If v and w are nonzero, equation (4.1) shows that cosθ has the same sign as v ·w, so

v ·w > 0 if and only if θ is acute (0≤ θ < π
2 )

v ·w < 0 if and only if θ is obtuse (π
2 < θ ≤ 0)

v ·w = 0 if and only if θ = π
2

In this last case, the (nonzero) vectors are perpendicular. The following terminology is used in linear
algebra:

Definition 4.5 Orthogonal Vectors in R3

Two vectors v and w are said to be orthogonal if v = 0 or w = 0 or the angle between them is π
2 .

Since v ·w = 0 if either v = 0 or w = 0, we have the following theorem:

Theorem 4.2.3

Two vectors v and w are orthogonal if and only if v ·w = 0.

Example 4.2.4

Show that the points P(3, −1, 1), Q(4, 1, 4), and R(6, 0, 4) are the vertices of a right triangle.

Solution. The vectors along the sides of the triangle are

−→
PQ =




1
2
3



 ,
−→
PR =




3
1
3



 , and
−→
QR =




2
−1

0





Evidently
−→
PQ ·
−→
QR = 2−2+0 = 0, so

−→
PQ and

−→
QR are orthogonal vectors. This means sides PQ

and QR are perpendicular—that is, the angle at Q is a right angle.

Example 4.2.5 demonstrates how the dot product can be used to verify geometrical theorems involving
perpendicular lines.
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Example 4.2.5

A parallelogram with sides of equal length is called a rhombus. Show that the diagonals of a
rhombus are perpendicular.

v

u

u−v

u+v

Solution. Let u and v denote vectors along two adjacent sides
of a rhombus, as shown in the diagram. Then the diagonals are
u−v and u+v, and we compute

(u−v) · (u+v) = u · (u+v)−v · (u+v)

= u ·u+u ·v−v ·u−v ·v
= ‖u‖2−‖v‖2

= 0

because ‖u‖= ‖v‖ (it is a rhombus). Hence u−v and u+v are orthogonal.

Projections

In applications of vectors, it is frequently useful to write a vector as the sum of two orthogonal vectors.
Here is an example.

Example 4.2.6

Suppose a ten-kilogram block is placed on a flat surface inclined 30◦ to the horizontal as in the
diagram. Neglecting friction, how much force is required to keep the block from sliding down the
surface?

30◦

30◦

w

w1

w2

Solution. Let w denote the weight (force due to gravity) exerted
on the block. Then ‖w‖= 10 kilograms and the direction of w is
vertically down as in the diagram. The idea is to write w as a sum
w = w1 +w2 where w1 is parallel to the inclined surface and w2
is perpendicular to the surface. Since there is no friction, the force
required is −w1 because the force w2 has no effect parallel to the

surface. As the angle between w and w2 is 30◦ in the diagram, we have ‖w1‖
‖w‖ = sin30◦ = 1

2 . Hence

‖w1‖= 1
2‖w‖=

1
210 = 5. Thus the required force has a magnitude of 5 kilograms weight directed

up the surface.
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u

u1
Q

P

P1

d
u−u1

(a)

u

u1
Q

P

P1

d

u−u1

(b)
Figure 4.2.5

If a nonzero vector d is specified, the key idea in Example 4.2.6 is to
be able to write an arbitrary vector u as a sum of two vectors,

u = u1 +u2

where u1 is parallel to d and u2 = u−u1 is orthogonal to d. Suppose that
u and d %= 0 emanate from a common tail Q (see Figure 4.2.5). Let P be
the tip of u, and let P1 denote the foot of the perpendicular from P to the
line through Q parallel to d.

Then u1 =
−→
QP1 has the required properties:

1. u1 is parallel to d.

2. u2 = u−u1 is orthogonal to d.

3. u = u1 +u2.

Definition 4.6 Projection in R3

The vector u1 =
−→
QP1 in Figure 4.2.5 is called the projection of u on d. It is denoted

u1 = projd u

In Figure 4.2.5(a) the vector u1 = projd u has the same direction as d; however, u1 and d have opposite
directions if the angle between u and d is greater than π

2 (Figure 4.2.5(b)). Note that the projection
u1 = projd u is zero if and only if u and d are orthogonal.

Calculating the projection of u on d %= 0 is remarkably easy.

Theorem 4.2.4

Let u and d %= 0 be vectors.

1. The projection of u on d is given by projd u = u·d
‖d‖2 d.

2. The vector u− projd u is orthogonal to d.

Proof. The vector u1 = projd u is parallel to d and so has the form u1 = td for some scalar t. The
requirement that u− u1 and d are orthogonal determines t. In fact, it means that (u− u1) · d = 0 by
Theorem 4.2.3. If u1 = td is substituted here, the condition is

0 = (u− td) ·d = u ·d− t(d ·d) = u ·d− t‖d‖2

It follows that t = u·d
‖d‖2 , where the assumption that d %= 0 guarantees that ‖d‖2 %= 0.
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Example 4.2.7

Find the projection of u =




2
−3

1



 on d =




1
−1

3



 and express u = u1 +u2 where u1 is parallel

to d and u2 is orthogonal to d.

Solution. The projection u1 of u on d is

u1 = projd u = u·d
‖d‖2 d = 2+3+3

12+(−1)2+32




1
−1

3



= 8
11




1
−1

3





Hence u2 = u−u1 =
1

11




14
−25
−13



, and this is orthogonal to d by Theorem 4.2.4 (alternatively,

observe that d ·u2 = 0). Since u = u1 +u2, we are done.

Example 4.2.8

u
u1

u−u1

Q

P(1, 3, −2)

P0(2, 0, −1)

d

Find the shortest distance (see diagram) from the point P(1, 3, −2)

to the line through P0(2, 0, −1) with direction vector d =




1
−1

0



.

Also find the point Q that lies on the line and is closest to P.

Solution. Let u =




1
3
−2



−




2
0
−1



=




−1

3
−1



 denote the vector from P0 to P, and let u1 denote

the projection of u on d. Thus

u1 =
u·d
‖d‖2 d = −1−3+0

12+(−1)2+02 d =−2d =




−2

2
0





by Theorem 4.2.4. We see geometrically that the point Q on the line is closest to P, so the distance
is

‖
−→
QP‖= ‖u−u1‖=

∥∥∥∥∥∥




1
1
−1





∥∥∥∥∥∥
=
√

3

To find the coordinates of Q, let p0 and q denote the vectors of P0 and Q, respectively. Then

p0 =




2
0
−1



 and q = p0 +u1 =




0
2
−1



. Hence Q(0, 2, −1) is the required point. It can be

checked that the distance from Q to P is
√

3, as expected.
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Planes

It is evident geometrically that among all planes that are perpendicular to a given straight line there is
exactly one containing any given point. This fact can be used to give a very simple description of a plane.
To do this, it is necessary to introduce the following notion:

Definition 4.7 Normal Vector in a Plane

A nonzero vector n is called a normal for a plane if it is orthogonal to every vector in the plane.

n

P0

P

Figure 4.2.6

For example, the coordinate vector k is a normal for the x-y plane.

Given a point P0 = P0(x0, y0, z0) and a nonzero vector n, there is a
unique plane through P0 with normal n, shaded in Figure 4.2.6. A point
P = P(x, y, z) lies on this plane if and only if the vector

−→
P0P is orthogonal

to n—that is, if and only if n ·−→P0P = 0. Because
−→
P0P =




x− x0
y− y0
z− z0



 this

gives the following result:

Scalar Equation of a Plane

The plane through P0(x0, y0, z0) with normal n =




a

b

c



 %= 0 as a normal vector is given by

a(x− x0)+b(y− y0)+ c(z− z0) = 0

In other words, a point P(x, y, z) is on this plane if and only if x, y, and z satisfy this equation.

Example 4.2.9

Find an equation of the plane through P0(1, −1, 3) with n =




3
−1

2



 as normal.

Solution. Here the general scalar equation becomes

3(x−1)− (y+1)+2(z−3) = 0

This simplifies to 3x− y+2z = 10.

If we write d = ax0+by0+cz0, the scalar equation shows that every plane with normal n =




a

b

c



 has
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a linear equation of the form
ax+by+ cz = d (4.2)

for some constant d. Conversely, the graph of this equation is a plane with n =




a

b

c



 as a normal vector

(assuming that a, b, and c are not all zero).

Example 4.2.10

Find an equation of the plane through P0(3, −1, 2) that is parallel to the plane with equation
2x−3y = 6.

Solution. The plane with equation 2x−3y = 6 has normal n =




2
−3

0



. Because the two planes

are parallel, n serves as a normal for the plane we seek, so the equation is 2x−3y = d for some d

by Equation 4.2. Insisting that P0(3, −1, 2) lies on the plane determines d; that is,
d = 2 ·3−3(−1) = 9. Hence, the equation is 2x−3y = 9.

Consider points P0(x0, y0, z0) and P(x, y, z) with vectors p0 =




x0
y0
z0



 and p =




x

y

z



. Given a nonzero

vector n, the scalar equation of the plane through P0(x0, y0, z0) with normal n =




a

b

c



 takes the vector

form:

Vector Equation of a Plane

The plane with normal n %= 0 through the point with vector p0 is given by

n · (p−p0) = 0

In other words, the point with vector p is on the plane if and only if p satisfies this condition.

Moreover, Equation 4.2 translates as follows:

Every plane with normal n has vector equation n ·p = d for some number d.

This is useful in the second solution of Example 4.2.11.

Example 4.2.11

Find the shortest distance from the point P(2, 1, −3) to the plane with equation 3x− y+4z = 1.
Also find the point Q on this plane closest to P.
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u

P0(0, −1, 0)
Q(x, y, z)

P(2, 1, −3)u1

n

Solution 1. The plane in question has normal n =




3
−1

4



.

Choose any point P0 on the plane—say P0(0, −1, 0)—and let
Q(x, y, z) be the point on the plane closest to P (see the diagram).

The vector from P0 to P is u =




2
2
−3



. Now erect n with its

tail at P0. Then
−→
QP = u1 and u1 is the projection of u on n:

u1 =
n·u
‖n‖2 n = −8

26




3
−1

4



= −4
13




3
−1

4





Hence the distance is ‖
−→
QP‖ = ‖u1‖ = 4

√
26

13 . To calculate the point Q, let q =




x

y

z



 and

p0 =




0
−1

0



 be the vectors of Q and P0. Then

q = p0 +u−u1 =




0
−1

0



+




2
2
−3



+ 4
13




3
−1

4



=





38
13
9

13
−23
13





This gives the coordinates of Q(38
13 , 9

13 , −23
13 ).

Solution 2. Let q =




x

y

z



 and p =




2
1
−3



 be the vectors of Q and P. Then Q is on the line

through P with direction vector n, so q = p+ tn for some scalar t. In addition, Q lies on the plane,
so n ·q = 1. This determines t:

1 = n ·q = n · (p+ tn) = n ·p+ t‖n‖2 =−7+ t(26)

This gives t = 8
26 = 4

13 , so




x

y

z



= q = p+ tn =




2
1
−3



+ 4
13




3
−1

4



+ 1
13




38

9
−23





as before. This determines Q (in the diagram), and the reader can verify that the required distance
is ‖
−→
QP‖= 4

13

√
26, as before.
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The Cross Product

If P, Q, and R are three distinct points in R3 that are not all on some line, it is clear geometrically that
there is a unique plane containing all three. The vectors

−→
PQ and

−→
PR both lie in this plane, so finding a

normal amounts to finding a nonzero vector orthogonal to both
−→
PQ and

−→
PR. The cross product provides a

systematic way to do this.

Definition 4.8 Cross Product

Given vectors v1 =




x1
y1
z1



 and v2 =




x2
y2
z2



, define the cross product v1×v2 by

v1×v2 =




y1z2− z1y2
−(x1z2− z1x2)

x1y2− y1x2





x

y

z

i j
k

O

Figure 4.2.7

(Because it is a vector, v1×v2 is often called the vector product.) There
is an easy way to remember this definition using the coordinate vectors:

i =




1
0
0



 , j =




0
1
0



 , and k =




0
0
1





They are vectors of length 1 pointing along the positive x, y, and z axes,
respectively, as in Figure 4.2.7. The reason for the name is that any vector
can be written as




x

y

z



= xi+ yj+ zk

With this, the cross product can be described as follows:

Determinant Form of the Cross Product

If v1 =




x1
y1
z1



 and v2 =




x2
y2
z2



 are two vectors, then

v1×v2 = det




i x1 x2
j y1 y2
k z1 z2



=

∣∣∣∣
y1 y2
z1 z2

∣∣∣∣ i−
∣∣∣∣

x1 x2
z1 z2

∣∣∣∣ j+
∣∣∣∣

x1 x2
y1 y2

∣∣∣∣k

where the determinant is expanded along the first column.
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Example 4.2.12

If v =




2
−1

4



 and w =




1
3
7



, then

v1×v2 = det




i 2 1
j −1 3
k 4 7



=

∣∣∣∣
−1 3

4 7

∣∣∣∣ i−
∣∣∣∣

2 1
4 7

∣∣∣∣ j+
∣∣∣∣

2 1
−1 3

∣∣∣∣k

=−19i−10j+7k

=




−19
−10

7





Observe that v×w is orthogonal to both v and w in Example 4.2.12. This holds in general as can be
verified directly by computing v · (v×w) and w · (v×w), and is recorded as the first part of the following
theorem. It will follow from a more general result which, together with the second part, will be proved in
Section 4.3 where a more detailed study of the cross product will be undertaken.

Theorem 4.2.5

Let v and w be vectors in R3.

1. v×w is a vector orthogonal to both v and w.

2. If v and w are nonzero, then v×w = 0 if and only if v and w are parallel.

It is interesting to contrast Theorem 4.2.5(2) with the assertion (in Theorem 4.2.3) that

v ·w = 0 if and only if v and w are orthogonal.

Example 4.2.13

Find the equation of the plane through P(1, 3, −2), Q(1, 1, 5), and R(2, −2, 3).

Solution. The vectors
−→
PQ =




0
−2

7



 and
−→
PR =




1
−5

5



 lie in the plane, so

−→
PQ×−→PR = det




i 0 1
j −2 −5
k 7 5



= 25i+7j+2k =




25

7
2





is a normal for the plane (being orthogonal to both
−→
PQ and

−→
PR). Hence the plane has equation

25x+7y+2z = d for some number d.
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Since P(1, 3, −2) lies in the plane we have 25 ·1+7 ·3+2(−2) = d. Hence d = 42 and the
equation is 25x+7y+2z = 42. Incidentally, the same equation is obtained (verify) if

−→
QP and

−→
QR,

or
−→
RP and

−→
RQ, are used as the vectors in the plane.

Example 4.2.14

Find the shortest distance between the nonparallel lines



x

y

z



=




1
0
−1



+ t




2
0
1



 and




x

y

z



=




3
1
0



+ s




1
1
−1





Then find the points A and B on the lines that are closest together.

Solution. Direction vectors for the two lines are d1 =




2
0
1



 and d2 =




1
1
−1



, so

n = d1×d2 = det




i 2 1
j 0 1
k 1 −1



=




−1

3
2





u

P2
n

B

A
P1

is perpendicular to both lines. Consider the plane shaded in
the diagram containing the first line with n as normal. This plane
contains P1(1, 0, −1) and is parallel to the second line. Because
P2(3, 1, 0) is on the second line, the distance in question is just the
shortest distance between P2(3, 1, 0) and this plane. The vector

u from P1 to P2 is u =
−→
P1P2 =




2
1
1



 and so, as in Example 4.2.11,

the distance is the length of the projection of u on n.

distance =
∥∥∥ u·n
‖n‖2 n

∥∥∥= |u·n|
‖n‖ = 3√

14
= 3
√

14
14

Note that it is necessary that n = d1×d2 be nonzero for this calculation to be possible. As is
shown later (Theorem 4.3.4), this is guaranteed by the fact that d1 and d2 are not parallel.
The points A and B have coordinates A(1+2t, 0, t−1) and B(3+ s, 1+ s, −s) for some s

and t, so
−→
AB =




2+ s−2t

1+ s

1− s− t



. This vector is orthogonal to both d1 and d2, and the conditions

−→
AB ·d1 = 0 and

−→
AB ·d2 = 0 give equations 5t− s = 5 and t−3s = 2. The solution is s = −5

14 and

t = 13
14 , so the points are A(40

14 , 0, −1
14 ) and B(37

14 , 9
14 , 5

14). We have ‖
−→
AB‖= 3

√
14

14 , as before.
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Exercises for 4.2

Exercise 4.2.1 Compute u ·v where:

a. u =




2
−1

3



, v =




−1

1
1





b. u =




1
2
−1



, v = u

c. u =




1
1
−3



, v =




2
−1

1





d. u =




3
−1

5



, v =




6
−7
−5





e. u =




x

y

z



, v =




a

b

c





f. u =




a

b

c



, v = 0

Exercise 4.2.2 Find the angle between the following
pairs of vectors.

a. u =




1
0
3



, v =




2
0
1





b. u =




3
−1

0



, v =




−6

2
0





c. u =




7
−1

3



, v =




1
4
−1





d. u =




2
1
−1



, v =




3
6
3





e. u =




1
−1

0



, v =




0
1
1





f. u =




0
3
4



, v =




5
√

2
−7
−1





Exercise 4.2.3 Find all real numbers x such that:

a.




2
−1

3



 and




x

−2
1



 are orthogonal.

b.




2
−1

1



 and




1
x

2



 are at an angle of π
3 .

Exercise 4.2.4 Find all vectors v =




x

y

z



 orthogonal

to both:

a. u1 =




−1
−3

2



, u2 =




0
1
1





b. u1 =




3
−1

2



, u2 =




2
0
1





c. u1 =




2
0
−1



, u2 =




−4

0
2





d. u1 =




2
−1

3



, u2 =




0
0
0





Exercise 4.2.5 Find two orthogonal vectors that are both

orthogonal to v =




1
2
0



.

Exercise 4.2.6 Consider the triangle with vertices
P(2, 0, −3), Q(5, −2, 1), and R(7, 5, 3).

a. Show that it is a right-angled triangle.

b. Find the lengths of the three sides and verify the
Pythagorean theorem.
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Exercise 4.2.7 Show that the triangle with vertices
A(4, −7, 9), B(6, 4, 4), and C(7, 10, −6) is not a right-
angled triangle.

Exercise 4.2.8 Find the three internal angles of the tri-
angle with vertices:

a. A(3, 1, −2), B(3, 0, −1), and C(5, 2, −1)

b. A(3, 1, −2), B(5, 2, −1), and C(4, 3, −3)

Exercise 4.2.9 Show that the line through P0(3, 1, 4)
and P1(2, 1, 3) is perpendicular to the line through
P2(1, −1, 2) and P3(0, 5, 3).

Exercise 4.2.10 In each case, compute the projection of
u on v.

a. u =




5
7
1



, v =




2
−1

3





b. u =




3
−2

1



, v =




4
1
1





c. u =




1
−1

2



, v =




3
−1

1





d. u =




3
−2
−1



, v =




−6

4
2





Exercise 4.2.11 In each case, write u = u1 +u2, where
u1 is parallel to v and u2 is orthogonal to v.

a. u =




2
−1

1



, v =




1
−1

3





b. u =




3
1
0



, v =




−2

1
4





c. u =




2
−1

0



, v =




3
1
−1





d. u =




3
−2

1



, v =




−6

4
−1





Exercise 4.2.12 Calculate the distance from the point P

to the line in each case and find the point Q on the line
closest to P.

a. P(3, 2−1)

line:




x

y

z



=




2
1
3



+ t




3
−1
−2





b. P(1, −1, 3)

line:




x

y

z



=




1
0
−1



+ t




3
1
4





Exercise 4.2.13 Compute u×v where:

a. u =




1
2
3



, v =




1
1
2





b. u =




3
−1

0



, v =




−6

2
0





c. u =




3
−2

1



, v =




1
1
−1





d. u =




2
0
−1



, v =




1
4
7





Exercise 4.2.14 Find an equation of each of the follow-
ing planes.

a. Passing through A(2, 1, 3), B(3, −1, 5), and
C(1, 2, −3).

b. Passing through A(1, −1, 6), B(0, 0, 1), and
C(4, 7, −11).

c. Passing through P(2, −3, 5) and parallel to the
plane with equation 3x−2y− z = 0.

d. Passing through P(3, 0, −1) and parallel to the
plane with equation 2x− y+ z = 3.

e. Containing P(3, 0, −1) and the line


x

y

z



=




0
0
2



+ t




1
0
1



 .
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f. Containing P(2, 1, 0) and the line



x

y

z



=




3
−1

2



+ t




1
0
−1



 .

g. Containing the lines



x

y

z



=




1
−1

2



+ t




1
1
1



 and




x

y

z



=




0
0
2



+ t




1
−1

0



.

h. Containing the lines




x

y

z



=




3
1
0



+ t




1
−1

3





and




x

y

z



=




0
−2

5



+ t




2
1
−1



.

i. Each point of which is equidistant from
P(2, −1, 3) and Q(1, 1, −1).

j. Each point of which is equidistant from
P(0, 1, −1) and Q(2, −1, −3).

Exercise 4.2.15 In each case, find a vector equation of
the line.

a. Passing through P(3, −1, 4) and perpendicular to
the plane 3x−2y− z = 0.

b. Passing through P(2, −1, 3) and perpendicular to
the plane 2x+ y = 1.

c. Passing through P(0, 0, 0) and perpendicular

to the lines




x

y

z



 =




1
1
0



 + t




2
0
−1



 and




x

y

z



=




2
1
−3



+ t




1
−1

5



.

d. Passing through P(1, 1, −1), and perpendicular to
the lines


x

y

z



=




2
0
1



+ t




1
1
−2



 and




x

y

z



=




5
5
−2



+ t




1
2
−3



.

e. Passing through P(2, 1, −1), intersecting the line


x

y

z



 =




1
2
−1



+ t




3
0
1



, and perpendicular

to that line.

f. Passing through P(1, 1, 2), intersecting the line


x

y

z



 =




2
1
0



+ t




1
1
1



, and perpendicular to

that line.

Exercise 4.2.16 In each case, find the shortest distance
from the point P to the plane and find the point Q on the
plane closest to P.

a. P(2, 3, 0); plane with equation 5x+ y+ z = 1.

b. P(3, 1, −1); plane with equation 2x+ y− z = 6.

Exercise 4.2.17

a. Does the line through P(1, 2, −3) with direction

vector d =




1
2
−3



 lie in the plane 2x−y−z = 3?

Explain.

b. Does the plane through P(4, 0, 5), Q(2, 2, 1), and
R(1, −1, 2) pass through the origin? Explain.

Exercise 4.2.18 Show that every plane contain-
ing P(1, 2, −1) and Q(2, 0, 1) must also contain
R(−1, 6, −5).

Exercise 4.2.19 Find the equations of the line of inter-
section of the following planes.

a. 2x−3y+2z = 5 and x+2y− z = 4.

b. 3x+ y−2z = 1 and x+ y+ z = 5.

Exercise 4.2.20 In each case, find all points of intersec-
tion of the given plane and the line


x

y

z



=




1
−2

3



+ t




2
5
−1



.

x−3y+2z = 4a. 2x− y− z = 5b.

3x− y+ z = 8c. −x−4y−3z = 6d.
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Exercise 4.2.21 Find the equation of all planes:

a. Perpendicular to the line


x

y

z



=




2
−1

3



+ t




2
1
3



.

b. Perpendicular to the line


x

y

z



=




1
0
−1



+ t




3
0
2



.

c. Containing the origin.

d. Containing P(3, 2, −4).

e. Containing P(1, 1, −1) and Q(0, 1, 1).

f. Containing P(2, −1, 1) and Q(1, 0, 0).

g. Containing the line


x

y

z



=




2
1
0



+ t




1
−1

0



.

h. Containing the line


x

y

z



=




3
0
2



+ t




1
−2
−1



.

Exercise 4.2.22 If a plane contains two distinct points
P1 and P2, show that it contains every point on the line
through P1 and P2.

Exercise 4.2.23 Find the shortest distance between the
following pairs of parallel lines.

a.




x

y

z



=




2
−1

3



+ t




1
−1

4



 ;




x

y

z



=




1
0
1



+ t




1
−1

4





b.




x

y

z



=




3
0
2



+ t




3
1
0



 ;




x

y

z



=




−1

2
2



+ t




3
1
0





Exercise 4.2.24 Find the shortest distance between the
following pairs of nonparallel lines and find the points on
the lines that are closest together.

a.




x

y

z



=




3
0
1



+ s




2
1
−3



 ;




x

y

z



=




1
1
−1



+ t




1
0
1





b.




x

y

z



=




1
−1

0



+ s




1
1
1



 ;




x

y

z



=




2
−1

3



+ t




3
1
0





c.




x

y

z



=




3
1
−1



+ s




1
1
−1



 ;




x

y

z



=




1
2
0



+ t




1
0
2





d.




x

y

z



=




1
2
3



+ s




2
0
−1



 ;




x

y

z



=




3
−1

0



+ t




1
1
0





Exercise 4.2.25 Show that two lines in the plane with
slopes m1 and m2 are perpendicular if and only if
m1m2 =−1. [Hint: Example 4.1.11.]

Exercise 4.2.26

a. Show that, of the four diagonals of a cube, no pair
is perpendicular.

b. Show that each diagonal is perpendicular to the
face diagonals it does not meet.

Exercise 4.2.27 Given a rectangular solid with sides of
lengths 1, 1, and

√
2, find the angle between a diagonal

and one of the longest sides.

Exercise 4.2.28 Consider a rectangular solid with sides
of lengths a, b, and c. Show that it has two orthogonal
diagonals if and only if the sum of two of a2, b2, and c2

equals the third.

Exercise 4.2.29 Let A, B, and C(2, −1, 1) be the ver-

tices of a triangle where
−→
AB is parallel to




1
−1

1



,
−→
AC is
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parallel to




2
0
−1



, and angle C = 90◦ . Find the equa-

tion of the line through B and C.

Exercise 4.2.30 If the diagonals of a parallelogram have
equal length, show that the parallelogram is a rectangle.

Exercise 4.2.31 Given v =




x

y

z



 in component form,

show that the projections of v on i, j, and k are xi, yj, and
zk, respectively.

Exercise 4.2.32

a. Can u · v = −7 if ‖u‖ = 3 and ‖v‖ = 2? Defend
your answer.

b. Find u · v if u =




2
−1

2



, ‖v‖ = 6, and the angle

between u and v is 2π
3 .

Exercise 4.2.33 Show (u+ v) · (u− v) = ‖u‖2−‖v‖2

for any vectors u and v.

Exercise 4.2.34

a. Show ‖u+ v‖2 + ‖u− v‖2 = 2(‖u‖2 + ‖v‖2) for
any vectors u and v.

b. What does this say about parallelograms?

Exercise 4.2.35 Show that if the diagonals of a paral-
lelogram are perpendicular, it is necessarily a rhombus.
[Hint: Example 4.2.5.]

Exercise 4.2.36 Let A and B be the end points of a di-
ameter of a circle (see the diagram). If C is any point on
the circle, show that AC and BC are perpendicular. [Hint:
Express

−→
AB · (

−→
AB×

−→
AC) = 0 and

−→
BC in terms of u =

−→
OA

and v =
−→
OC, where O is the centre.]

O
A B

C

Exercise 4.2.37 Show that u and v are orthogonal, if
and only if ‖u+v‖2 = ‖u‖2 +‖v‖2.

Exercise 4.2.38 Let u, v, and w be pairwise orthogonal
vectors.

a. Show that ‖u+v+w‖2 = ‖u‖2 +‖v‖2 +‖w‖2.

b. If u, v, and w are all the same length, show that
they all make the same angle with u+v+w.

Exercise 4.2.39

a. Show that n =

[
a

b

]
is orthogonal to every vector

along the line ax+by+ c = 0.

b. Show that the shortest distance from P0(x0, y0) to
the line is |ax0+by0+c|√

a2+b2 .

[Hint: If P1 is on the line, project u =
−→
P1P0 on n.]

Exercise 4.2.40 Assume u and v are nonzero vectors
that are not parallel. Show that w = ‖u‖v + ‖v‖u is a
nonzero vector that bisects the angle between u and v.

Exercise 4.2.41 Let α , β , and γ be the angles a vector
v %= 0 makes with the positive x, y, and z axes, respec-
tively. Then cosα , cos β , and cosγ are called the direc-

tion cosines of the vector v.

a. If v =




a

b

c



, show that cos α = a
‖v‖ , cosβ = b

‖v‖ ,

and cos γ = c
‖v‖ .

b. Show that cos2 α + cos2 β + cos2 γ = 1.

Exercise 4.2.42 Let v %= 0 be any nonzero vector and
suppose that a vector u can be written as u= p+q, where
p is parallel to v and q is orthogonal to v. Show that p

must equal the projection of u on v. [Hint: Argue as in
the proof of Theorem 4.2.4.]

Exercise 4.2.43 Let v %= 0 be a nonzero vector and let
a %= 0 be a scalar. If u is any vector, show that the projec-
tion of u on v equals the projection of u on av.

Exercise 4.2.44

a. Show that the Cauchy-Schwarz inequality |u ·
v| ≤ ‖u‖‖v‖ holds for all vectors u and v. [Hint:
|cos θ |≤ 1 for all angles θ .]
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b. Show that |u · v| = ‖u‖‖v‖ if and only if u and v

are parallel.

[Hint: When is cosθ =±1?]

c. Show that |x1x2 + y1y2 + z1z2|
≤
√

x2
1 + y2

1 + z2
1

√
x2

2 + y2
2 + z2

2

holds for all numbers x1, x2, y1, y2, z1, and z2.

d. Show that |xy+ yz+ zx| ≤ x2 + y2 + z2 for all x, y,
and z.

e. Show that (x+ y+ z)2 ≤ 3(x2 + y2 + z2) holds for
all x, y, and z.

Exercise 4.2.45 Prove that the triangle inequality

‖u+v‖ ≤ ‖u‖+‖v‖ holds for all vectors u and v. [Hint:
Consider the triangle with u and v as two sides.]

4.3 More on the Cross Product

The cross product v×w of two R3-vectors v =




x1
y1
z1



 and w =




x2
y2
z2



 was defined in Section 4.2 where

we observed that it can be best remembered using a determinant:

v×w = det




i x1 x2
j y1 y2
k z1 z2



=

∣∣∣∣
y1 y2
z1 z2

∣∣∣∣ i−
∣∣∣∣

x1 x2
z1 z2

∣∣∣∣ j+
∣∣∣∣

x1 x2
y1 y2

∣∣∣∣k (4.3)

Here i =




1
0
0



, j =




0
1
0



, and k =




1
0
0



 are the coordinate vectors, and the determinant is expanded

along the first column. We observed (but did not prove) in Theorem 4.2.5 that v×w is orthogonal to both
v and w. This follows easily from the next result.

Theorem 4.3.1

If u =




x0
y0
z0



, v =




x1
y1
z1



, and w =




x2
y2
z2



, then u · (v×w) = det




x0 x1 x2
y0 y1 y2
z0 z1 z2



.

Proof. Recall that u · (v×w) is computed by multiplying corresponding components of u and v×w and
then adding. Using equation (4.3), the result is:

u · (v×w) = x0

(∣∣∣∣
y1 y2
z1 z2

∣∣∣∣

)
+ y0

(
−
∣∣∣∣

x1 x2
z1 z2

∣∣∣∣

)
+ z0

(∣∣∣∣
x1 x2
y1 y2

∣∣∣∣

)
= det




x0 x1 x2
y0 y1 y2
z0 z1 z2





where the last determinant is expanded along column 1.

The result in Theorem 4.3.1 can be succinctly stated as follows: If u, v, and w are three vectors in R3,
then

u · (v×w) = det
[

u v w
]
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where
[

u v w
]

denotes the matrix with u, v, and w as its columns. Now it is clear that v×w is
orthogonal to both v and w because the determinant of a matrix is zero if two columns are identical.

Because of (4.3) and Theorem 4.3.1, several of the following properties of the cross product follow
from properties of determinants (they can also be verified directly).

Theorem 4.3.2

Let u, v, and w denote arbitrary vectors in R3.

1. u×v is a vector.

2. u×v is orthogonal to both u and v.

3. u×0 = 0 = 0×u.

4. u×u = 0.

5. u×v =−(v×u).

6. (ku)×v = k(u×v) = u× (kv) for any
scalar k.

7. u× (v+w) = (u×v)+(u×w).

8. (v+w)×u = (v×u)+(w×u).

Proof. (1) is clear; (2) follows from Theorem 4.3.1; and (3) and (4) follow because the determinant of a
matrix is zero if one column is zero or if two columns are identical. If two columns are interchanged, the
determinant changes sign, and this proves (5). The proofs of (6), (7), and (8) are left as Exercise 4.3.15.

We now come to a fundamental relationship between the dot and cross products.

Theorem 4.3.3: Lagrange Identity12

If u and v are any two vectors in R3, then

‖u×v‖2 = ‖u‖2‖v‖2− (u ·v)2

Proof. Given u and v, introduce a coordinate system and write u =




x1
y1
z1



 and v =




x2
y2
z2



 in component

form. Then all the terms in the identity can be computed in terms of the components. The detailed proof
is left as Exercise 4.3.14.

An expression for the magnitude of the vector u×v can be easily obtained from the Lagrange identity.
If θ is the angle between u and v, substituting u ·v = ‖u‖‖v‖cosθ into the Lagrange identity gives

‖u×v‖2 = ‖u‖2‖v‖2−‖u‖2‖v‖2 cos2 θ = ‖u‖2‖v‖2 sin2 θ

12Joseph Louis Lagrange (1736–1813) was born in Italy and spent his early years in Turin. At the age of 19 he solved a
famous problem by inventing an entirely new method, known today as the calculus of variations, and went on to become one
of the greatest mathematicians of all time. His work brought a new level of rigour to analysis and his Mécanique Analytique

is a masterpiece in which he introduced methods still in use. In 1766 he was appointed to the Berlin Academy by Frederik the
Great who asserted that the “greatest mathematician in Europe” should be at the court of the “greatest king in Europe.” After
the death of Frederick, Lagrange went to Paris at the invitation of Louis XVI. He remained there throughout the revolution and
was made a count by Napoleon.
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using the fact that 1− cos2 θ = sin2 θ . But sinθ is nonnegative on the range 0 ≤ θ ≤ π , so taking the
positive square root of both sides gives

‖u×v‖= ‖u‖‖v‖sinθ

u

v

‖u‖sinθ

θ

Figure 4.3.1

This expression for ‖u×v‖ makes no reference to a coordinate
system and, moreover, it has a nice geometrical interpretation. The
parallelogram determined by the vectors u and v has base length
‖v‖ and altitude ‖u‖sinθ (see Figure 4.3.1). Hence the area of the
parallelogram formed by u and v is

(‖u‖sinθ)‖v‖= ‖u×v‖

This proves the first part of Theorem 4.3.4.

Theorem 4.3.4

If u and v are two nonzero vectors and θ is the angle between u and v, then

1. ‖u×v‖= ‖u‖‖v‖sinθ = the area of the parallelogram determined by u and v.

2. u and v are parallel if and only if u×v = 0.

Proof of (2). By (1), u×v = 0 if and only if the area of the parallelogram is zero. By Figure 4.3.1 the area
vanishes if and only if u and v have the same or opposite direction—that is, if and only if they are parallel.

Example 4.3.1

P

Q

R

Find the area of the triangle with vertices P(2, 1, 0), Q(3, −1, 1),
and R(1, 0, 1).

Solution. We have
−→
RP =




1
1
−1



 and
−→
RQ =




2
−1

0



. The area of

the triangle is half the area of the parallelogram (see the diagram),
and so equals 1

2‖
−→
RP×

−→
RQ‖. We have

−→
RP×

−→
RQ = det




i 1 2
j 1 −1
k −1 0



=




−1
−2
−3





so the area of the triangle is 1
2‖
−→
RP×

−→
RQ‖= 1

2

√
1+4+9 = 1

2

√
14.
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v

u×v

h
w

u

Figure 4.3.2

If three vectors u, v, and w are given, they determine a “squashed”
rectangular solid called a parallelepiped (Figure 4.3.2), and it is often
useful to be able to find the volume of such a solid. The base of the solid
is the parallelogram determined by u and v, so it has area A = ‖u×v‖ by
Theorem 4.3.4. The height of the solid is the length h of the projection of
w on u×v. Hence

h =
∣∣∣w·(u×v)
‖u×v‖2

∣∣∣‖u×v‖= |w·(u×v)|
‖u×v‖ = |w·(u×v)|

A

Thus the volume of the parallelepiped is hA = |w · (u×v)|. This proves

Theorem 4.3.5

The volume of the parallelepiped determined by three vectors w, u, and v (Figure 4.3.2) is given
by |w · (u×v)|.

Example 4.3.2

Find the volume of the parallelepiped determined by the vectors

w =




1
2
−1



 , u =




1
1
0



 , v =




−2

0
1





Solution. By Theorem 4.3.1, w · (u×v) = det




1 1 −2
2 1 0
−1 0 1



=−3. Hence the volume is

|w · (u×v)|= |−3|= 3 by Theorem 4.3.5.

y

z

x

O

Left-hand system

y

z

x

O

Right-hand system

Figure 4.3.3

We can now give an intrinsic description of the cross product u× v.
Its magnitude ‖u×v‖= ‖u‖‖v‖sinθ is coordinate-free. If u×v %= 0, its
direction is very nearly determined by the fact that it is orthogonal to both
u and v and so points along the line normal to the plane determined by u

and v. It remains only to decide which of the two possible directions is
correct.

Before this can be done, the basic issue of how coordinates are as-
signed must be clarified. When coordinate axes are chosen in space, the
procedure is as follows: An origin is selected, two perpendicular lines (the
x and y axes) are chosen through the origin, and a positive direction on
each of these axes is selected quite arbitrarily. Then the line through the
origin normal to this x-y plane is called the z axis, but there is a choice of
which direction on this axis is the positive one. The two possibilities are
shown in Figure 4.3.3, and it is a standard convention that cartesian coor-
dinates are always right-hand coordinate systems. The reason for this
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terminology is that, in such a system, if the z axis is grasped in the right hand with the thumb pointing in
the positive z direction, then the fingers curl around from the positive x axis to the positive y axis (through
a right angle).

Suppose now that u and v are given and that θ is the angle between them (so 0 ≤ θ ≤ π). Then the
direction of ‖u×v‖ is given by the right-hand rule.

Right-hand Rule

If the vector u×v is grasped in the right hand and the fingers curl around from u to v through the
angle θ , the thumb points in the direction for u×v.

vθ
c

O

a
b

u

x

y

z

Figure 4.3.4

To indicate why this is true, introduce coordinates in R3 as follows: Let
u and v have a common tail O, choose the origin at O, choose the x axis
so that u points in the positive x direction, and then choose the y axis
so that v is in the x-y plane and the positive y axis is on the same side
of the x axis as v. Then, in this system, u and v have component form

u=




a

0
0



 and v=




b

c

0



where a> 0 and c> 0. The situation is depicted

in Figure 4.3.4. The right-hand rule asserts that u×v should point in the
positive z direction. But our definition of u×v gives

u×v = det




i a b

j 0 c

k 0 0



=




0
0
ac



= (ac)k

and (ac)k has the positive z direction because ac > 0.

Exercises for 4.3

Exercise 4.3.1 If i, j, and k are the coordinate vectors,
verify that i× j = k, j×k = i, and k× i = j.

Exercise 4.3.2 Show that u× (v×w) need not equal
(u×v)×w by calculating both when

u =




1
1
1



 , v =




1
1
0



 , and w =




0
0
1





Exercise 4.3.3 Find two unit vectors orthogonal to both
u and v if:

a. u =




1
2
2



, v =




2
−1

2





b. u =




1
2
−1



, v =




3
1
2





Exercise 4.3.4 Find the area of the triangle with the fol-
lowing vertices.

a. A(3, −1, 2), B(1, 1, 0), and C(1, 2, −1)

b. A(3, 0, 1), B(5, 1, 0), and C(7, 2, −1)

c. A(1, 1, −1), B(2, 0, 1), and C(1, −1, 3)

d. A(3, −1, 1), B(4, 1, 0), and C(2, −3, 0)
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Exercise 4.3.5 Find the volume of the parallelepiped
determined by w, u, and v when:

a. w =




2
1
1



, v =




1
0
2



, and u =




2
1
−1





b. w =




1
0
3



, v =




2
1
−3



, and u =




1
1
1





Exercise 4.3.6 Let P0 be a point with vector p0, and let
ax+ by+ cz = d be the equation of a plane with normal

n =




a

b

c



.

a. Show that the point on the plane closest to P0 has
vector p given by

p = p0 +
d−(p0·n)
‖n‖2 n.

[Hint: p = p0 + tn for some t, and p ·n = d.]

b. Show that the shortest distance from P0 to the
plane is |d−(p0·n)|

‖n‖ .

c. Let P′0 denote the reflection of P0 in the plane—
that is, the point on the opposite side of the plane
such that the line through P0 and P′0 is perpendicu-
lar to the plane.

Show that p0 +2d−(p0·n)
‖n‖2 n is the vector of P′0.

Exercise 4.3.7 Simplify (au+bv)× (cu+dv).

Exercise 4.3.8 Show that the shortest distance from a
point P to the line through P0 with direction vector d is
‖−→P0P×d‖
‖d‖ .

Exercise 4.3.9 Let u and v be nonzero, nonorthogo-
nal vectors. If θ is the angle between them, show that
tanθ = ‖u×v‖

u·v .

Exercise 4.3.10 Show that points A, B, and C are all on
one line if and only if

−→
AB×

−→
AC = 0

Exercise 4.3.11 Show that points A, B, C, and D are all
on one plane if and only if

−→
AB · (

−→
AB×

−→
AC) = 0

Exercise 4.3.12 Use Theorem 4.3.5 to confirm that, if
u, v, and w are mutually perpendicular, the (rectangular)
parallelepiped they determine has volume ‖u‖‖v‖‖w‖.

Exercise 4.3.13 Show that the volume of the paral-
lelepiped determined by u, v, and u×v is ‖u×v‖2.

Exercise 4.3.14 Complete the proof of Theorem 4.3.3.

Exercise 4.3.15 Prove the following properties in The-
orem 4.3.2.

Property 6a. Property 7b.

Property 8c.

Exercise 4.3.16

a. Show that w · (u× v) = u · (v×w) = v× (w×u)
holds for all vectors w, u, and v.

b. Show that v−w and (u× v)+ (v×w)+ (w×u)
are orthogonal.

Exercise 4.3.17 Show u×(v×w)= (u ·w)v−(u×v)w.
[Hint: First do it for u = i, j, and k; then write u =
xi+ yj+ zk and use Theorem 4.3.2.]

Exercise 4.3.18 Prove the Jacobi identity:

u× (v×w)+v× (w×u)+w× (u×v) = 0

[Hint: The preceding exercise.]

Exercise 4.3.19 Show that

(u×v) · (w× z) = det
[

u ·w u · z
v ·w v · z

]

[Hint: Exercises 4.3.16 and 4.3.17.]

Exercise 4.3.20 Let P, Q, R, and S be four points, not
all on one plane, as in the diagram. Show that the volume
of the pyramid they determine is

1
6 |
−→
PQ · (−→PR×

−→
PS)|.

[Hint: The volume of a cone with base area A and height
h as in the diagram below right is 1

3 Ah.]

P

Q

R

S

h
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Exercise 4.3.21 Consider a triangle with vertices A, B,
and C, as in the diagram below. Let α , β , and γ denote
the angles at A, B, and C, respectively, and let a, b, and
c denote the lengths of the sides opposite A, B, and C,
respectively. Write u =

−→
AB, v =

−→
BC, and w =

−→
CA.

c a

bα

β

γ
A

B

C

a. Deduce that u+v+w = 0.

b. Show that u×v= w×u= v×w. [Hint: Compute
u× (u+v+w) and v× (u+v+w).]

c. Deduce the law of sines:

sinα
a = sinβ

b = sinγ
c

Exercise 4.3.22 Show that the (shortest) distance be-
tween two planes n ·p = d1 and n ·p = d2 with n as nor-
mal is |d2−d1|

‖n‖ .

Exercise 4.3.23 Let A and B be points other than the
origin, and let a and b be their vectors. If a and b are not
parallel, show that the plane through A, B, and the origin
is given by

{P(x, y, z) |




x

y

z



= sa+ tb for some s and t}

Exercise 4.3.24 Let A be a 2× 3 matrix of rank 2 with
rows r1 and r2. Show that

P = {XA | X = [xy];x, y arbitrary}

is the plane through the origin with normal r1× r2.

Exercise 4.3.25 Given the cube with vertices P(x, y, z),
where each of x, y, and z is either 0 or 2, consider the
plane perpendicular to the diagonal through P(0, 0, 0)
and P(2, 2, 2) and bisecting it.

a. Show that the plane meets six of the edges of the
cube and bisects them.

b. Show that the six points in (a) are the vertices of a
regular hexagon.

4.4 Linear Operators on R3

Recall that a transformation T : Rn→ Rm is called linear if T (x+y) = T (x)+T (y) and T (ax) = aT (x)
holds for all x and y in Rn and all scalars a. In this case we showed (in Theorem 2.6.2) that there exists
an m×n matrix A such that T (x) = Ax for all x in Rn, and we say that T is the matrix transformation

induced by A.

Definition 4.9 Linear Operator on Rn

A linear transformation
T : Rn→ Rn

is called a linear operator on Rn.

In Section 2.6 we investigated three important linear operators on R2: rotations about the origin, reflections
in a line through the origin, and projections on this line.

In this section we investigate the analogous operators on R3: Rotations about a line through the origin,
reflections in a plane through the origin, and projections onto a plane or line through the origin in R3. In
every case we show that the operator is linear, and we find the matrices of all the reflections and projections.
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To do this we must prove that these reflections, projections, and rotations are actually linear operators
on R3. In the case of reflections and rotations, it is convenient to examine a more general situation. A
transformation T : R3→ R3 is said to be distance preserving if the distance between T (v) and T (w) is
the same as the distance between v and w for all v and w in R3; that is,

‖T (v)−T (w)‖= ‖v−w‖ for all v and w in R3 (4.4)

Clearly reflections and rotations are distance preserving, and both carry 0 to 0, so the following theorem
shows that they are both linear.

Theorem 4.4.1

If T : R3→ R3 is distance preserving, and if T (0) = 0, then T is linear.

w

v+wv

T (w)

T (v+w)

T (v)

x

y

z

Figure 4.4.1

Proof. Since T (0) = 0, taking w = 0 in (4.4) shows that ‖T (v)‖= ‖v‖ for
all v in R3, that is T preserves length. Also, ‖T (v)−T (w)‖2 = ‖v−w‖2

by (4.4). Since ‖v−w‖2 = ‖v‖2−2v ·w+‖w‖2 always holds, it follows
that T (v) · T (w) = v ·w for all v and w. Hence (by Theorem 4.2.2) the
angle between T (v) and T (w) is the same as the angle between v and w

for all (nonzero) vectors v and w in R3.

With this we can show that T is linear. Given nonzero vectors v and w

in R3, the vector v+w is the diagonal of the parallelogram determined by
v and w. By the preceding paragraph, the effect of T is to carry this entire

parallelogram to the parallelogram determined by T (v) and T (w), with
diagonal T (v+w). But this diagonal is T (v)+T (w) by the parallelogram
law (see Figure 4.4.1).

In other words, T (v+w) = T (v)+T (w). A similar argument shows that T (av) = aT (v) for all scalars
a, proving that T is indeed linear.

Distance-preserving linear operators are called isometries, and we return to them in Section 10.4.

Reflections and Projections

In Section 2.6 we studied the reflection Qm : R2→ R2 in the line y = mx and projection Pm : R2→ R2 on
the same line. We found (in Theorems 2.6.5 and 2.6.6) that they are both linear and

Qm has matrix 1
1+m2

[
1−m2 2m

2m m2−1

]
and Pm has matrix 1

1+m2

[
1 m

m m2

]
.

L

PL(v)

0

v

QL(v)

Figure 4.4.2

We now look at the analogues in R3.

Let L denote a line through the origin in R3. Given a vector v in R3,
the reflection QL(v) of v in L and the projection PL(v) of v on L are defined
in Figure 4.4.2. In the same figure, we see that

PL(v) = v+ 1
2 [QL(v)−v] = 1

2 [QL(v)+v] (4.5)
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so the fact that QL is linear (by Theorem 4.4.1) shows that PL is also linear.13

However, Theorem 4.2.4 gives us the matrix of PL directly. In fact, if d =




a

b

c



 %= 0 is a direction

vector for L, and we write v =




x

y

z



, then

PL(v) =
v·d
‖d‖2 d = ax+by+cz

a2+b2+c2




a

b

c



= 1
a2+b2+c2




a2 ab ac

ab b2 bc

ac bc c2








x

y

z





as the reader can verify. Note that this shows directly that PL is a matrix transformation and so gives
another proof that it is linear.

Theorem 4.4.2

Let L denote the line through the origin in R3 with direction vector d =




a

b

c



 %= 0. Then PL and

QL are both linear and

PL has matrix 1
a2+b2+c2




a2 ab ac

ab b2 bc

ac bc c2





QL has matrix 1
a2+b2+c2




a2−b2− c2 2ab 2ac

2ab b2−a2− c2 2bc

2ac 2bc c2−a2−b2





Proof. It remains to find the matrix of QL. But (4.5) implies that QL(v) = 2PL(v)−v for each v in R3, so

if v =




x

y

z



 we obtain (with some matrix arithmetic):

QL(v) =





2

a2+b2+c2




a2 ab ac

ab b2 bc

ac bc c2



−




1 0 0
0 1 0
0 0 1













x

y

z





= 1
a2+b2+c2




a2−b2− c2 2ab 2ac

2ab b2−a2− c2 2bc

2ac 2bc c2−a2−b2








x

y

z





as required.

13Note that Theorem 4.4.1 does not apply to PL since it does not preserve distance.
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M

v

O PM(v)

QM(v)

Figure 4.4.3

In R3 we can reflect in planes as well as lines. Let M denote a plane
through the origin in R3. Given a vector v in R3, the reflection QM(v) of
v in M and the projection PM(v) of v on M are defined in Figure 4.4.3. As
above, we have

PM(v) = v+ 1
2 [QM(v)−v] = 1

2 [QM(v)+v]

so the fact that QM is linear (again by Theorem 4.4.1) shows that PM is
also linear.

Again we can obtain the matrix directly. If n is a normal for the plane M, then Figure 4.4.3 shows that

PM(v) = v− projn v = v− v·n
‖n‖2 n for all vectors v.

If n =




a

b

c



 %= 0 and v =




x

y

z



, a computation like the above gives

PM(v) =




1 0 0
0 1 0
0 0 1








x

y

z



− ax+by+cz
a2+b2+c2




a

b

c





= 1
a2+b2+c2




b2 + c2 −ab −ac

−ab a2 + c2 −bc

−ac −bc b2 + c2








x

y

z





This proves the first part of

Theorem 4.4.3

Let M denote the plane through the origin in R3 with normal n =




a

b

c



 %= 0. Then PM and QM are

both linear and

PM has matrix 1
a2+b2+c2




b2 + c2 −ab −ac

−ab a2 + c2 −bc

−ac −bc a2 +b2





QM has matrix 1
a2+b2+c2




b2 + c2−a2 −2ab −2ac

−2ab a2 + c2−b2 −2bc

−2ac −2bc a2 +b2− c2





Proof. It remains to compute the matrix of QM . Since QM(v) = 2PM(v)−v for each v in R3, the compu-
tation is similar to the above and is left as an exercise for the reader.
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Rotations

In Section 2.6 we studied the rotation Rθ : R2→ R2 counterclockwise about the origin through the angle

θ . Moreover, we showed in Theorem 2.6.4 that Rθ is linear and has matrix
[

cosθ −sinθ
sinθ cosθ

]
. One

extension of this is given in the following example.

Example 4.4.1

Let Rz, θ : R3→ R3 denote rotation of R3 about the z axis through an angle θ from the positive x

axis toward the positive y axis. Show that Rz, θ is linear and find its matrix.

θ

θ
i

j

k

Rz(i)

Rz(j)

x

y

z

Figure 4.4.4

Solution. First R is distance preserving and so is linear by
Theorem 4.4.1. Hence we apply Theorem 2.6.2 to obtain the
matrix of Rz, θ .

Let i =




1
0
0



, j =




0
1
0



, and k =




0
0
1



 denote the standard

basis of R3; we must find Rz, θ (i), Rz, θ (j), and Rz, θ (k). Clearly
Rz, θ (k) = k. The effect of Rz, θ on the x-y plane is to rotate
it counterclockwise through the angle θ . Hence Figure 4.4.4 gives

Rz, θ (i) =




cosθ
sinθ

0



 , Rz, θ (j) =




−sinθ
cosθ

0





so, by Theorem 2.6.2, Rz, θ has matrix

[
Rz, θ (i) Rz, θ (j) Rz, θ (k)

]
=




cosθ −sinθ 0
sinθ cosθ 0

0 0 1





Example 4.4.1 begs to be generalized. Given a line L through the origin in R3, every rotation about L

through a fixed angle is clearly distance preserving, and so is a linear operator by Theorem 4.4.1. However,
giving a precise description of the matrix of this rotation is not easy and will have to wait until more
techniques are available.
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Transformations of Areas and Volumes

Origin

sv

v

Figure 4.4.5

Let v be a nonzero vector in R3. Each vector in the same direction as v

whose length is a fraction s of the length of v has the form sv (see Fig-
ure 4.4.5).

With this, scrutiny of Figure 4.4.6 shows that a vector u is in the paral-
lelogram determined by v and w if and only if it has the form u = sv+ tw

where 0≤ s≤ 1 and 0≤ t ≤ 1. But then, if T : R3→ R3 is a linear trans-
formation, we have

T (sv+ tw) = T (sv)+T (tw) = sT (v)+ tT (w)

O

sv
v

sv
+ tw

tw w

Figure 4.4.6

Hence T (sv+ tw) is in the parallelogram determined by T (v) and T (w).
Conversely, every vector in this parallelogram has the form T (sv+ tw)
where sv+ tw is in the parallelogram determined by v and w. For this rea-
son, the parallelogram determined by T (v) and T (w) is called the image

of the parallelogram determined by v and w. We record this discussion as:

v

w

u

O

T (v)

T (w)

T (u)

O

Figure 4.4.7

Theorem 4.4.4

If T : R3→ R3 (or R2→ R2) is a linear operator, the image of the
parallelogram determined by vectors v and w is the parallelogram
determined by T (v) and T (w).

This result is illustrated in Figure 4.4.7, and was used in Examples 2.2.15
and 2.2.16 to reveal the effect of expansion and shear transformations.

We now describe the effect of a linear transformation T : R3→ R3 on
the parallelepiped determined by three vectors u, v, and w in R3 (see the
discussion preceding Theorem 4.3.5). If T has matrix A, Theorem 4.4.4
shows that this parallelepiped is carried to the parallelepiped determined
by T (u) = Au, T (v) = Av, and T (w) = Aw. In particular, we want to
discover how the volume changes, and it turns out to be closely related to
the determinant of the matrix A.

Theorem 4.4.5

Let vol (u, v, w) denote the volume of the parallelepiped determined by three vectors u, v, and w
in R3, and let area (p, q) denote the area of the parallelogram determined by two vectors p and q
in R2. Then:

1. If A is a 3×3 matrix, then vol (Au, Av, Aw) = | det (A)| · vol (u, v, w).

2. If A is a 2×2 matrix, then area (Ap, Aq) = | det (A)| · area (p, q).
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Proof.

1. Let
[

u v w
]

denote the 3×3 matrix with columns u, v, and w. Then

vol (Au, Av, Aw) = |Au · (Av×Aw)|

by Theorem 4.3.5. Now apply Theorem 4.3.1 twice to get

Au · (Av×Aw) = det
[

Au Av Aw
]
= det (A

[
u v w

]
)

= det (A) det
[

u v w
]

= det (A)(u · (v×w))

where we used Definition 2.9 and the product theorem for determinants. Finally (1) follows from
Theorem 4.3.5 by taking absolute values.

k

p1

q1 2. Given p =

[
x

y

]
in R2, p1 =




x

y

0



 in R3. By the diagram,

area (p, q) = vol (p1, q1, k) where k is the (length 1) coordinate

vector along the z axis. If A is a 2×2 matrix, write A1 =

[
A 0
0 1

]

in block form, and observe that (Av)1 = (A1v1) for all v in R2 and
A1k = k. Hence part (1) of this theorem shows

area (Ap, Aq) = vol (A1p1, A1q1, A1k)

= | det (A1)| vol (p1, q1, k)

= | det (A)| area (p, q)

as required.

Define the unit square and unit cube to be the square and cube corresponding to the coordinate
vectors in R2 and R3, respectively. Then Theorem 4.4.5 gives a geometrical meaning to the determinant
of a matrix A:

• If A is a 2×2 matrix, then | det (A)| is the area of the image of the unit square under multiplication
by A;

• If A is a 3×3 matrix, then | det (A)| is the volume of the image of the unit cube under multiplication
by A.

These results, together with the importance of areas and volumes in geometry, were among the reasons for
the initial development of determinants.
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Exercises for 4.4

Exercise 4.4.1 In each case show that that T is ei-
ther projection on a line, reflection in a line, or rotation
through an angle, and find the line or angle.

a. T

[
x

y

]
= 1

5

[
x+2y

2x+4y

]

b. T

[
x

y

]
= 1

2

[
x− y

y− x

]

c. T

[
x

y

]
= 1√

2

[
−x− y

x− y

]

d. T

[
x

y

]
= 1

5

[
−3x+4y

4x+3y

]

e. T

[
x

y

]
=

[
−y

−x

]

f. T

[
x

y

]
= 1

2

[
x−
√

3y√
3x+ y

]

Exercise 4.4.2 Determine the effect of the following
transformations.

a. Rotation through π
2 , followed by projection on the

y axis, followed by reflection in the line y = x.

b. Projection on the line y= x followed by projection
on the line y =−x.

c. Projection on the x axis followed by reflection in
the line y = x.

Exercise 4.4.3 In each case solve the problem by find-
ing the matrix of the operator.

a. Find the projection of v =




1
−2

3



 on the plane

with equation 3x−5y+2z = 0.

b. Find the projection of v =




0
1
−3



 on the plane

with equation 2x− y+4z = 0.

c. Find the reflection of v =




1
−2

3



 in the plane

with equation x− y+3z = 0.

d. Find the reflection of v =




0
1
−3



 in the plane

with equation 2x+ y−5z = 0.

e. Find the reflection of v =




2
5
−1



 in the line with

equation




x

y

z



= t




1
1
−2



.

f. Find the projection of v =




1
−1

7



 on the line

with equation




x

y

z



= t




3
0
4



.

g. Find the projection of v =




1
1
−3



 on the line

with equation




x

y

z



= t




2
0
−3



.

h. Find the reflection of v =




2
−5

0



 in the line with

equation




x

y

z



= t




1
1
−3



.

Exercise 4.4.4

a. Find the rotation of v =




2
3
−1



 about the z axis

through θ = π
4 .
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b. Find the rotation of v =




1
0
3



 about the z axis

through θ = π
6 .

Exercise 4.4.5 Find the matrix of the rotation in R3

about the x axis through the angle θ (from the positive
y axis to the positive z axis).

Exercise 4.4.6 Find the matrix of the rotation about the
y axis through the angle θ (from the positive x axis to the
positive z axis).

Exercise 4.4.7 If A is 3× 3, show that the image of
the line in R3 through p0 with direction vector d is the
line through Ap0 with direction vector Ad, assuming that
Ad %= 0. What happens if Ad = 0?

Exercise 4.4.8 If A is 3×3 and invertible, show that the
image of the plane through the origin with normal n is
the plane through the origin with normal n1 = Bn where
B = (A−1)T . [Hint: Use the fact that v ·w = vT w to show
that n1 · (Ap) = n ·p for each p in R3.]

Exercise 4.4.9 Let L be the line through the origin in R2

with direction vector d =

[
a

b

]
%= 0.

a. If PL denotes projection on L, show that PL has

matrix 1
a2+b2

[
a2 ab

ab b2

]
.

b. If QL denotes reflection in L, show that QL has ma-

trix 1
a2+b2

[
a2−b2 2ab

2ab b2−a2

]
.

Exercise 4.4.10 Let n be a nonzero vector in R3, let L be
the line through the origin with direction vector n, and let
M be the plane through the origin with normal n. Show
that PL(v) = QL(v)+PM(v) for all v in R3. [In this case,
we say that PL = QL +PM.]

Exercise 4.4.11 If M is the plane through the origin in

R3 with normal n =




a

b

c



, show that QM has matrix

1
a2+b2+c2




b2 + c2− a2 −2ab −2ac

−2ab a2 + c2− b2 −2bc

−2ac −2bc a2 + b2− c2





4.5 An Application to Computer Graphics

Computer graphics deals with images displayed on a computer screen, and so arises in a variety of appli-
cations, ranging from word processors, to Star Wars animations, to video games, to wire-frame images of
an airplane. These images consist of a number of points on the screen, together with instructions on how
to fill in areas bounded by lines and curves. Often curves are approximated by a set of short straight-line
segments, so that the curve is specified by a series of points on the screen at the end of these segments.
Matrix transformations are important here because matrix images of straight line segments are again line
segments.14 Note that a colour image requires that three images are sent, one to each of the red, green,
and blue phosphorus dots on the screen, in varying intensities.

Consider displaying the letter A. In reality, it is depicted on the screen, as in Figure 4.5.1, by specifying
the coordinates of the 11 corners and filling in the interior.

For simplicity, we will disregard the thickness of the letter, so we require only five coordinates as in
Figure 4.5.2.

14If v0 and v1 are vectors, the vector from v0 to v1 is d = v1− v0. So a vector v lies on the line segment between v0 and
v1 if and only if v = v0 + td for some number t in the range 0 ≤ t ≤ 1. Thus the image of this segment is the set of vectors
Av = Av0 + tAd with 0≤ t ≤ 1, that is the image is the segment between Av0 and Av1.
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Figure 4.5.1

Origin
1

4

5

3

2

Figure 4.5.2

Figure 4.5.3

Figure 4.5.4

Figure 4.5.5

This simplified letter can then be stored as a data matrix

Vertex 1 2 3 4 5

D =

[
0 6 5 1 3
0 0 3 3 9

]

where the columns are the coordinates of the vertices in order. Then if we want
to transform the letter by a 2×2 matrix A, we left-multiply this data matrix by
A (the effect is to multiply each column by A and so transform each vertex).

For example, we can slant the letter to the right by multiplying by an x-shear

matrix A=

[
1 0.2
0 1

]
—see Section 2.2. The result is the letter with data matrix

A =

[
1 0.2
0 1

][
0 6 5 1 3
0 0 3 3 9

]
=

[
0 6 5.6 1.6 4.8
0 0 3 3 9

]

which is shown in Figure 4.5.3.

If we want to make this slanted matrix narrower, we can now apply an x-

scale matrix B =

[
0.8 0
0 1

]
that shrinks the x-coordinate by 0.8. The result is

the composite transformation

BAD =

[
0.8 0
0 1

][
1 0.2
0 1

][
0 6 5 1 3
0 0 3 3 9

]

=

[
0 4.8 4.48 1.28 3.84
0 0 3 3 9

]

which is drawn in Figure 4.5.4.

On the other hand, we can rotate the letter about the origin through π
6 (or 30◦)

by multiplying by the matrix Rπ
2
=



 cos(π
6 ) −sin(π

6 )

sin(π
6 ) cos(π

6 )



=

[
0.866 −0.5
0.5 0.866

]
.

This gives

Rπ
2
=

[
0.866 −0.5
0.5 0.866

][
0 6 5 1 3
0 0 3 3 9

]

=

[
0 5.196 2.83 −0.634 −1.902
0 3 5.098 3.098 9.294

]

and is plotted in Figure 4.5.5.

This poses a problem: How do we rotate at a point other than the origin? It
turns out that we can do this when we have solved another more basic problem.
It is clearly important to be able to translate a screen image by a fixed vector
w, that is apply the transformation Tw : R2→R2 given by Tw(v) = v+w for all
v in R2. The problem is that these translations are not matrix transformations
R2→ R2 because they do not carry 0 to 0 (unless w = 0). However, there is a
clever way around this.
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The idea is to represent a point v =

[
x

y

]
as a 3×1 column




x

y

1



, called the homogeneous coordi-

nates of v. Then translation by w =

[
p

q

]
can be achieved by multiplying by a 3×3 matrix:




1 0 p

0 1 q

0 0 1








x

y

1



=




x+ p

y+q

1



=

[
Tw(v)

1

]

Thus, by using homogeneous coordinates we can implement the translation Tw in the top two coordinates.

On the other hand, the matrix transformation induced by A =

[
a b

c d

]
is also given by a 3×3 matrix:




a b 0
c d 0
0 0 1








x

y

1



=




ax+by

cx+dy

1



=

[
Av

1

]

So everything can be accomplished at the expense of using 3×3 matrices and homogeneous coordinates.

Example 4.5.1

Rotate the letter A in Figure 4.5.2 through π
6 about the point

[
4
5

]
.

Solution. Using homogeneous coordinates for the vertices of the letter results in a data matrix with
three rows:

Kd =




0 6 5 1 3
0 0 3 3 9
1 1 1 1 1





Origin

Figure 4.5.6

If we write w =

[
4
5

]
, the idea is to use a composite of

transformations: First translate the letter by −w so that the point
w moves to the origin, then rotate this translated letter, and then
translate it by w back to its original position. The matrix arithmetic
is as follows (remember the order of composition!):




1 0 4
0 1 5
0 0 1








0.866 −0.5 0
0.5 0.866 0
0 0 1








1 0 −4
0 1 −5
0 0 1








0 6 5 1 3
0 0 3 3 9
1 1 1 1 1





=




3.036 8.232 5.866 2.402 1.134
−1.33 1.67 3.768 1.768 7.964
1 1 1 1 1





This is plotted in Figure 4.5.6.

This discussion merely touches the surface of computer graphics, and the reader is referred to special-
ized books on the subject. Realistic graphic rendering requires an enormous number of matrix calcula-
tions. In fact, matrix multiplication algorithms are now embedded in microchip circuits, and can perform
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over 100 million matrix multiplications per second. This is particularly important in the field of three-
dimensional graphics where the homogeneous coordinates have four components and 4× 4 matrices are
required.

Exercises for 4.5

Exercise 4.5.1 Consider the letter A described in Fig-
ure 4.5.2. Find the data matrix for the letter obtained by:

a. Rotating the letter through π
4 about the origin.

b. Rotating the letter through π
4 about the point[

1
2

]
.

Exercise 4.5.2 Find the matrix for turning the letter A

in Figure 4.5.2 upside-down in place.

Exercise 4.5.3 Find the 3× 3 matrix for reflecting in

the line y = mx+ b. Use
[

1
m

]
as direction vector for

the line.

Exercise 4.5.4 Find the 3×3 matrix for rotating through
the angle θ about the point P(a, b).

Exercise 4.5.5 Find the reflection of the point P in the
line y = 1+2x in R2 if:

a. P = P(1, 1)

b. P = P(1, 4)

c. What about P = P(1, 3)? Explain. [Hint: Exam-
ple 4.5.1 and Section 4.4.]

Supplementary Exercises for Chapter 4

Exercise 4.1 Suppose that u and v are nonzero vectors.
If u and v are not parallel, and au+bv = a1u+b1v, show
that a = a1 and b = b1.

Exercise 4.2 Consider a triangle with vertices A, B,
and C. Let E and F be the midpoints of sides AB and
AC, respectively, and let the medians EC and FB meet at
O. Write

−→
EO = s

−→
EC and

−→
FO = t

−→
FB, where s and t are

scalars. Show that s = t = 1
3 by expressing

−→
AO two ways

in the form a
−→
EO+b

−→
AC, and applying Exercise 4.1. Con-

clude that the medians of a triangle meet at the point on
each that is one-third of the way from the midpoint to the
vertex (and so are concurrent).

Exercise 4.3 A river flows at 1 km/h and a swimmer
moves at 2 km/h (relative to the water). At what angle
must he swim to go straight across? What is his resulting
speed?

Exercise 4.4 A wind is blowing from the south at 75

knots, and an airplane flies heading east at 100 knots.
Find the resulting velocity of the airplane.

Exercise 4.5 An airplane pilot flies at 300 km/h in a di-
rection 30◦ south of east. The wind is blowing from the
south at 150 km/h.

a. Find the resulting direction and speed of the air-
plane.

b. Find the speed of the airplane if the wind is from
the west (at 150 km/h).

Exercise 4.6 A rescue boat has a top speed of 13 knots.
The captain wants to go due east as fast as possible in wa-
ter with a current of 5 knots due south. Find the velocity
vector v = (x, y) that she must achieve, assuming the x

and y axes point east and north, respectively, and find her
resulting speed.
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Exercise 4.7 A boat goes 12 knots heading north. The
current is 5 knots from the west. In what direction does
the boat actually move and at what speed?

Exercise 4.8 Show that the distance from a point A (with
vector a) to the plane with vector equation n · p = d is

1
‖n‖ |n ·a−d|.

Exercise 4.9 If two distinct points lie in a plane, show
that the line through these points is contained in the
plane.

Exercise 4.10 The line through a vertex of a triangle,
perpendicular to the opposite side, is called an altitude

of the triangle. Show that the three altitudes of any tri-
angle are concurrent. (The intersection of the altitudes
is called the orthocentre of the triangle.) [Hint: If P is
the intersection of two of the altitudes, show that the line
through P and the remaining vertex is perpendicular to
the remaining side.]


