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Foreward

Mathematics education at the beginning university level is closely tied to the traditional publishers. In my
opinion, it gives them too much control of both cost and content. The main goal of most publishers is
profit, and the result has been a sales-driven business model as opposed to a pedagogical one. This results
in frequent new “editions” of textbooks motivated largely to reduce the sale of used books rather than to
update content quality. It also introduces copyright restrictions which stifle the creation and use of new
pedagogical methods and materials. The overall result is high cost textbooks which may not meet the
evolving educational needs of instructors and students.

To be fair, publishers do try to produce material that reflects new trends. But their goal is to sell books
and not necessarily to create tools for student success in mathematics education. Sadly, this has led to
a model where the primary choice for adapting to (or initiating) curriculum change is to find a different
commercial textbook. My editor once said that the text that is adopted is often everyone’s third choice.

Of course instructors can produce their own lecture notes, and have done so for years, but this remains
an onerous task. The publishing industry arose from the need to provide authors with copy-editing, edi-
torial, and marketing services, as well as extensive reviews of prospective customers to ascertain market
trends and content updates. These are necessary skills and services that the industry continues to offer.

Authors of open educational resources (OER) including (but not limited to) textbooks and lecture
notes, cannot afford this on their own. But they do have two great advantages: The cost to students is
significantly lower, and open licenses return content control to instructors. Through editable file formats
and open licenses, OER can be developed, maintained, reviewed, edited, and improved by a variety of
contributors. Instructors can now respond to curriculum change by revising and reordering material to
create content that meets the needs of their students. While editorial and quality control remain daunting
tasks, great strides have been made in addressing the issues of accessibility, affordability and adaptability
of the material.

For the above reasons I have decided to release my text under an open license, even though it was
published for many years through a traditional publisher.

Supporting students and instructors in a typical classroom requires much more than a textbook. Thus,
while anyone is welcome to use and adapt my text at no cost, I also decided to work closely with Lyryx
Learning. With colleagues at the University of Calgary, I helped create Lyryx almost 20 years ago. The
original idea was to develop quality online assessment (with feedback) well beyond the multiple-choice
style then available. Now Lyryx also works to provide and sustain open textbooks; working with authors,
contributors, and reviewers to ensure instructors need not sacrifice quality and rigour when switching to
an open text.

I believe this is the right direction for mathematical publishing going forward, and look forward to
being a part of how this new approach develops.

W. Keith Nicholson, Author
University of Calgary
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Preface

This textbook is an introduction to the ideas and techniques of linear algebra for first- or second-year
students with a working knowledge of high school algebra. The contents have enough flexibility to present
a traditional introduction to the subject, or to allow for a more applied course. Chapters 1–4 contain a one-
semester course for beginners whereas Chapters 5–9 contain a second semester course (see the Suggested
Course Outlines below). The text is primarily about real linear algebra with complex numbers being
mentioned when appropriate (reviewed in Appendix A). Overall, the aim of the text is to achieve a balance
among computational skills, theory, and applications of linear algebra. Calculus is not a prerequisite;
places where it is mentioned may be omitted.

As a rule, students of linear algebra learn by studying examples and solving problems. Accordingly,
the book contains a variety of exercises (over 1200, many with multiple parts), ordered as to their difficulty.
In addition, more than 375 solved examples are included in the text, many of which are computational in
nature. The examples are also used to motivate (and illustrate) concepts and theorems, carrying the student
from concrete to abstract. While the treatment is rigorous, proofs are presented at a level appropriate to
the student and may be omitted with no loss of continuity. As a result, the book can be used to give a
course that emphasizes computation and examples, or to give a more theoretical treatment (some longer
proofs are deferred to the end of the Section).

Linear Algebra has application to the natural sciences, engineering, management, and the social sci-
ences as well as mathematics. Consequently, 18 optional “applications” sections are included in the text
introducing topics as diverse as electrical networks, economic models, Markov chains, linear recurrences,
systems of differential equations, and linear codes over finite fields. Additionally some applications (for
example linear dynamical systems, and directed graphs) are introduced in context. The applications sec-
tions appear at the end of the relevant chapters to encourage students to browse.

SUGGESTED COURSE OUTLINES

This text includes the basis for a two-semester course in linear algebra.

• Chapters 1–4 provide a standard one-semester course of 35 lectures, including linear equations, ma-
trix algebra, determinants, diagonalization, and geometric vectors, with applications as time permits.
At Calgary, we cover Sections 1.1–1.3, 2.1–2.6, 3.1–3.3, and 4.1–4.4 and the course is taken by all
science and engineering students in their first semester. Prerequisites include a working knowledge
of high school algebra (algebraic manipulations and some familiarity with polynomials); calculus is
not required.

• Chapters 5–9 contain a second semester course including Rn, abstract vector spaces, linear trans-
formations (and their matrices), orthogonality, complex matrices (up to the spectral theorem) and
applications. There is more material here than can be covered in one semester, and at Calgary we

ix



x CONTENTS

cover Sections 5.1–5.5, 6.1–6.4, 7.1–7.3, 8.1–8.7, and 9.1–9.3 with a couple of applications as time
permits.

• Chapter 5 is a “bridging” chapter that introduces concepts like spanning, independence, and basis
in the concrete setting of Rn, before venturing into the abstract in Chapter 6. The duplication is
balanced by the value of reviewing these notions, and it enables the student to focus in Chapter 6
on the new idea of an abstract system. Moreover, Chapter 5 completes the discussion of rank and
diagonalization from earlier chapters, and includes a brief introduction to orthogonality in Rn, which
creates the possibility of a one-semester, matrix-oriented course covering Chapter 1–5 for students
not wanting to study the abstract theory.

CHAPTER DEPENDENCIES

The following chart suggests how the material introduced in each chapter draws on concepts covered in
certain earlier chapters. A solid arrow means that ready assimilation of ideas and techniques presented
in the later chapter depends on familiarity with the earlier chapter. A broken arrow indicates that some
reference to the earlier chapter is made but the chapter need not be covered.

Chapter 1: Systems of Linear Equations

Chapter 2: Matrix Algebra

Chapter 3: Determinants and Diagonalization Chapter 4: Vector Geometry

Chapter 5: The Vector Space Rn

Chapter 6: Vector Spaces

Chapter 7: Linear Transformations Chapter 8: Orthogonality

Chapter 9: Change of Basis

Chapter 10: Inner Product Spaces Chapter 11: Canonical Forms

HIGHLIGHTS OF THE TEXT

• Two-stage definition of matrix multiplication. First, in Section 2.2 matrix-vector products are
introduced naturally by viewing the left side of a system of linear equations as a product. Second,
matrix-matrix products are defined in Section 2.3 by taking the columns of a product AB to be A

times the corresponding columns of B. This is motivated by viewing the matrix product as compo-
sition of maps (see next item). This works well pedagogically and the usual dot-product definition
follows easily. As a bonus, the proof of associativity of matrix multiplication now takes four lines.
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• Matrices as transformations. Matrix-column multiplications are viewed (in Section 2.2) as trans-
formations Rn→ Rm. These maps are then used to describe simple geometric reflections and rota-
tions in R2 as well as systems of linear equations.

• Early linear transformations. It has been said that vector spaces exist so that linear transformations
can act on them—consequently these maps are a recurring theme in the text. Motivated by the matrix
transformations introduced earlier, linear transformations Rn→ Rm are defined in Section 2.6, their
standard matrices are derived, and they are then used to describe rotations, reflections, projections,
and other operators on R2.

• Early diagonalization. As requested by engineers and scientists, this important technique is pre-
sented in the first term using only determinants and matrix inverses (before defining independence
and dimension). Applications to population growth and linear recurrences are given.

• Early dynamical systems. These are introduced in Chapter 3, and lead (via diagonalization) to
applications like the possible extinction of species. Beginning students in science and engineering
can relate to this because they can see (often for the first time) the relevance of the subject to the real
world.

• Bridging chapter. Chapter 5 lets students deal with tough concepts (like independence, spanning,
and basis) in the concrete setting of Rn before having to cope with abstract vector spaces in Chap-
ter 6.

• Examples. The text contains over 375 worked examples, which present the main techniques of the
subject, illustrate the central ideas, and are keyed to the exercises in each section.

• Exercises. The text contains a variety of exercises (nearly 1175, many with multiple parts), starting
with computational problems and gradually progressing to more theoretical exercises. Select solu-
tions are available at the end of the book or in the Student Solution Manual. There is a complete
Solution Manual is available for instructors.

• Applications. There are optional applications at the end of most chapters (see the list below).
While some are presented in the course of the text, most appear at the end of the relevant chapter to
encourage students to browse.

• Appendices. Because complex numbers are needed in the text, they are described in Appendix A,
which includes the polar form and roots of unity. Methods of proofs are discussed in Appendix B,
followed by mathematical induction in Appendix C. A brief discussion of polynomials is included
in Appendix D. All these topics are presented at the high-school level.

• Self-Study. This text is self-contained and therefore is suitable for self-study.

• Rigour. Proofs are presented as clearly as possible (some at the end of the section), but they are
optional and the instructor can choose how much he or she wants to prove. However the proofs are
there, so this text is more rigorous than most. Linear algebra provides one of the better venues where
students begin to think logically and argue concisely. To this end, there are exercises that ask the
student to “show” some simple implication, and others that ask her or him to either prove a given
statement or give a counterexample. I personally present a few proofs in the first semester course
and more in the second (see the Suggested Course Outlines).
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• Major Theorems. Several major results are presented in the book. Examples: Uniqueness of the
reduced row-echelon form; the cofactor expansion for determinants; the Cayley-Hamilton theorem;
the Jordan canonical form; Schur’s theorem on block triangular form; the principal axes and spectral
theorems; and others. Proofs are included because the stronger students should at least be aware of
what is involved.

CHAPTER SUMMARIES

Chapter 1: Systems of Linear Equations.

A standard treatment of gaussian elimination is given. The rank of a matrix is introduced via the row-
echelon form, and solutions to a homogeneous system are presented as linear combinations of basic solu-
tions. Applications to network flows, electrical networks, and chemical reactions are provided.

Chapter 2: Matrix Algebra.

After a traditional look at matrix addition, scalar multiplication, and transposition in Section 2.1, matrix-
vector multiplication is introduced in Section 2.2 by viewing the left side of a system of linear equations
as the product Ax of the coefficient matrix A with the column x of variables. The usual dot-product
definition of a matrix-vector multiplication follows. Section 2.2 ends by viewing an m×n matrix A as a
transformation Rn→Rm. This is illustrated for R2→R2 by describing reflection in the x axis, rotation of
R2 through π

2 , shears, and so on.

In Section 2.3, the product of matrices A and B is defined by AB =
[

Ab1 Ab2 · · · Abn

]
, where

the bi are the columns of B. A routine computation shows that this is the matrix of the transformation B

followed by A. This observation is used frequently throughout the book, and leads to simple, conceptual
proofs of the basic axioms of matrix algebra. Note that linearity is not required—all that is needed is some
basic properties of matrix-vector multiplication developed in Section 2.2. Thus the usual arcane definition
of matrix multiplication is split into two well motivated parts, each an important aspect of matrix algebra.
Of course, this has the pedagogical advantage that the conceptual power of geometry can be invoked to
illuminate and clarify algebraic techniques and definitions.

In Section 2.4 and 2.5 matrix inverses are characterized, their geometrical meaning is explored, and
block multiplication is introduced, emphasizing those cases needed later in the book. Elementary ma-
trices are discussed, and the Smith normal form is derived. Then in Section 2.6, linear transformations
Rn→ Rm are defined and shown to be matrix transformations. The matrices of reflections, rotations, and
projections in the plane are determined. Finally, matrix multiplication is related to directed graphs, matrix
LU-factorization is introduced, and applications to economic models and Markov chains are presented.
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Chapter 3: Determinants and Diagonalization.

The cofactor expansion is stated (proved by induction later) and used to define determinants inductively
and to deduce the basic rules. The product and adjugate theorems are proved. Then the diagonalization
algorithm is presented (motivated by an example about the possible extinction of a species of birds). As
requested by our Engineering Faculty, this is done earlier than in most texts because it requires only deter-
minants and matrix inverses, avoiding any need for subspaces, independence and dimension. Eigenvectors
of a 2× 2 matrix A are described geometrically (using the A-invariance of lines through the origin). Di-
agonalization is then used to study discrete linear dynamical systems and to discuss applications to linear
recurrences and systems of differential equations. A brief discussion of Google PageRank is included.

Chapter 4: Vector Geometry.

Vectors are presented intrinsically in terms of length and direction, and are related to matrices via coordi-
nates. Then vector operations are defined using matrices and shown to be the same as the corresponding
intrinsic definitions. Next, dot products and projections are introduced to solve problems about lines and
planes. This leads to the cross product. Then matrix transformations are introduced in R3, matrices of pro-
jections and reflections are derived, and areas and volumes are computed using determinants. The chapter
closes with an application to computer graphics.

Chapter 5: The Vector Space Rn.

Subspaces, spanning, independence, and dimensions are introduced in the context of Rn in the first two
sections. Orthogonal bases are introduced and used to derive the expansion theorem. The basic properties
of rank are presented and used to justify the definition given in Section 1.2. Then, after a rigorous study of
diagonalization, best approximation and least squares are discussed. The chapter closes with an application
to correlation and variance.

This is a “bridging” chapter, easing the transition to abstract spaces. Concern about duplication with
Chapter 6 is mitigated by the fact that this is the most difficult part of the course and many students
welcome a repeat discussion of concepts like independence and spanning, albeit in the abstract setting.
In a different direction, Chapter 1–5 could serve as a solid introduction to linear algebra for students not
requiring abstract theory.

Chapter 6: Vector Spaces.

Building on the work on Rn in Chapter 5, the basic theory of abstract finite dimensional vector spaces is
developed emphasizing new examples like matrices, polynomials and functions. This is the first acquain-
tance most students have had with an abstract system, so not having to deal with spanning, independence
and dimension in the general context eases the transition to abstract thinking. Applications to polynomials
and to differential equations are included.
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Chapter 7: Linear Transformations.

General linear transformations are introduced, motivated by many examples from geometry, matrix theory,
and calculus. Then kernels and images are defined, the dimension theorem is proved, and isomorphisms
are discussed. The chapter ends with an application to linear recurrences. A proof is included that the
order of a differential equation (with constant coefficients) equals the dimension of the space of solutions.

Chapter 8: Orthogonality.

The study of orthogonality in Rn, begun in Chapter 5, is continued. Orthogonal complements and pro-
jections are defined and used to study orthogonal diagonalization. This leads to the principal axes theo-
rem, the Cholesky factorization of a positive definite matrix, QR-factorization, and to a discussion of the
singular value decomposition, the polar form, and the pseudoinverse. The theory is extended to Cn in
Section 8.7 where hermitian and unitary matrices are discussed, culminating in Schur’s theorem and the
spectral theorem. A short proof of the Cayley-Hamilton theorem is also presented. In Section 8.8 the field
Zp of integers modulo p is constructed informally for any prime p, and codes are discussed over any finite
field. The chapter concludes with applications to quadratic forms, constrained optimization, and statistical
principal component analysis.

Chapter 9: Change of Basis.

The matrix of general linear transformation is defined and studied. In the case of an operator, the rela-
tionship between basis changes and similarity is revealed. This is illustrated by computing the matrix of a
rotation about a line through the origin in R3. Finally, invariant subspaces and direct sums are introduced,
related to similarity, and (as an example) used to show that every involution is similar to a diagonal matrix
with diagonal entries ±1.

Chapter 10: Inner Product Spaces.

General inner products are introduced and distance, norms, and the Cauchy-Schwarz inequality are dis-
cussed. The Gram-Schmidt algorithm is presented, projections are defined and the approximation theorem
is proved (with an application to Fourier approximation). Finally, isometries are characterized, and dis-
tance preserving operators are shown to be composites of a translations and isometries.

Chapter 11: Canonical Forms.

The work in Chapter 9 is continued. Invariant subspaces and direct sums are used to derive the block
triangular form. That, in turn, is used to give a compact proof of the Jordan canonical form. Of course the
level is higher.
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Appendices

In Appendix A, complex arithmetic is developed far enough to find nth roots. In Appendix B, methods of
proof are discussed, while Appendix C presents mathematical induction. Finally, Appendix D describes
the properties of polynomials in elementary terms.

LIST OF APPLICATIONS

• Network Flow (Section 1.4)

• Electrical Networks (Section 1.5)

• Chemical Reactions (Section 1.6)

• Directed Graphs (in Section 2.3)

• Input-Output Economic Models (Section 2.8)

• Markov Chains (Section 2.9)

• Polynomial Interpolation (in Section 3.2)

• Population Growth (Examples 3.3.1 and 3.3.12, Section 3.3)

• Google PageRank (in Section 3.3)

• Linear Recurrences (Section 3.4; see also Section 7.5)

• Systems of Differential Equations (Section 3.5)

• Computer Graphics (Section 4.5)

• Least Squares Approximation (in Section 5.6)

• Correlation and Variance (Section 5.7)

• Polynomials (Section 6.5)

• Differential Equations (Section 6.6)

• Linear Recurrences (Section 7.5)

• Error Correcting Codes (Section 8.8)

• Quadratic Forms (Section 8.9)

• Constrained Optimization (Section 8.10)
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1. Systems of Linear Equations

1.1 Solutions and Elementary Operations

Practical problems in many fields of study—such as biology, business, chemistry, computer science, eco-
nomics, electronics, engineering, physics and the social sciences—can often be reduced to solving a sys-
tem of linear equations. Linear algebra arose from attempts to find systematic methods for solving these
systems, so it is natural to begin this book by studying linear equations.

If a, b, and c are real numbers, the graph of an equation of the form

ax+by = c

is a straight line (if a and b are not both zero), so such an equation is called a linear equation in the
variables x and y. However, it is often convenient to write the variables as x1, x2, . . . , xn, particularly
when more than two variables are involved. An equation of the form

a1x1 +a2x2 + · · ·+anxn = b

is called a linear equation in the n variables x1, x2, . . . , xn. Here a1, a2, . . . , an denote real numbers
(called the coefficients of x1, x2, . . . , xn, respectively) and b is also a number (called the constant term

of the equation). A finite collection of linear equations in the variables x1, x2, . . . , xn is called a system of

linear equations in these variables. Hence,

2x1−3x2 +5x3 = 7

is a linear equation; the coefficients of x1, x2, and x3 are 2,−3, and 5, and the constant term is 7. Note that
each variable in a linear equation occurs to the first power only.

Given a linear equation a1x1 +a2x2 + · · ·+anxn = b, a sequence s1, s2, . . . , sn of n numbers is called
a solution to the equation if

a1s1 +a2s2 + · · ·+ansn = b

that is, if the equation is satisfied when the substitutions x1 = s1, x2 = s2, . . . , xn = sn are made. A
sequence of numbers is called a solution to a system of equations if it is a solution to every equation in
the system.

For example, x =−2, y = 5, z = 0 and x = 0, y = 4, z =−1 are both solutions to the system

x+ y+ z= 3
2x+ y+ 3z= 1

A system may have no solution at all, or it may have a unique solution, or it may have an infinite family of
solutions. For instance, the system x+ y = 2, x+ y = 3 has no solution because the sum of two numbers
cannot be 2 and 3 simultaneously. A system that has no solution is called inconsistent; a system with at
least one solution is called consistent. The system in the following example has infinitely many solutions.

1
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Example 1.1.1

Show that, for arbitrary values of s and t,

x1 = t− s+1
x2 = t + s+2

x3 = s

x4 = t

is a solution to the system
x1− 2x2 +3x3 +x4 =−3

2x1− x2 +3x3−x4 = 0

Solution. Simply substitute these values of x1, x2, x3, and x4 in each equation.

x1−2x2 +3x3 + x4 = (t− s+1)−2(t + s+2)+3s+ t =−3
2x1− x2 +3x3− x4 = 2(t− s+1)− (t + s+2)+3s− t = 0

Because both equations are satisfied, it is a solution for all choices of s and t.

The quantities s and t in Example 1.1.1 are called parameters, and the set of solutions, described in
this way, is said to be given in parametric form and is called the general solution to the system. It turns
out that the solutions to every system of equations (if there are solutions) can be given in parametric form
(that is, the variables x1, x2, . . . are given in terms of new independent variables s, t, etc.). The following
example shows how this happens in the simplest systems where only one equation is present.

Example 1.1.2

Describe all solutions to 3x− y+2z = 6 in parametric form.

Solution. Solving the equation for y in terms of x and z, we get y = 3x+2z−6. If s and t are
arbitrary then, setting x = s, z = t, we get solutions

x = s

y = 3s+2t−6 s and t arbitrary
z = t

Of course we could have solved for x: x = 1
3(y−2z+6). Then, if we take y = p, z = q, the

solutions are represented as follows:

x = 1
3(p−2q+6)

y = p p and q arbitrary
z = q

The same family of solutions can “look” quite different!
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x

y

P(2, 1)

x− y = 1

x+ y = 3

(a) Unique Solution
(x = 2, y = 1)

x

y

x+ y = 2

x+ y = 4

(b) No Solution

x

y

3x− y = 4

−6x+ 2y=−8

(c) Infinitely many solutions
(x = t, y = 3t− 4)

Figure 1.1.1

When only two variables are involved, the solutions to systems of lin-
ear equations can be described geometrically because the graph of a lin-
ear equation ax+ by = c is a straight line if a and b are not both zero.
Moreover, a point P(s, t) with coordinates s and t lies on the line if and
only if as+ bt = c—that is when x = s, y = t is a solution to the equa-
tion. Hence the solutions to a system of linear equations correspond to the
points P(s, t) that lie on all the lines in question.

In particular, if the system consists of just one equation, there must
be infinitely many solutions because there are infinitely many points on a
line. If the system has two equations, there are three possibilities for the
corresponding straight lines:

1. The lines intersect at a single point. Then the system has a unique
solution corresponding to that point.

2. The lines are parallel (and distinct) and so do not intersect. Then

the system has no solution.

3. The lines are identical. Then the system has infinitely many
solutions—one for each point on the (common) line.

These three situations are illustrated in Figure 1.1.1. In each case the
graphs of two specific lines are plotted and the corresponding equations are
indicated. In the last case, the equations are 3x−y= 4 and−6x+2y =−8,
which have identical graphs.

With three variables, the graph of an equation ax+by+ cz = d can be
shown to be a plane (see Section 4.2) and so again provides a “picture”
of the set of solutions. However, this graphical method has its limitations:
When more than three variables are involved, no physical image of the
graphs (called hyperplanes) is possible. It is necessary to turn to a more
“algebraic” method of solution.

Before describing the method, we introduce a concept that simplifies
the computations involved. Consider the following system

3x1 + 2x2− x3 + x4 =−1
2x1 − x3 + 2x4 = 0
3x1 + x2 + 2x3 + 5x4 = 2

of three equations in four variables. The array of numbers1




3 2 −1 1 −1
2 0 −1 2 0
3 1 2 5 2





occurring in the system is called the augmented matrix of the system. Each row of the matrix consists
of the coefficients of the variables (in order) from the corresponding equation, together with the constant

1A rectangular array of numbers is called a matrix. Matrices will be discussed in more detail in Chapter 2.
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term. For clarity, the constants are separated by a vertical line. The augmented matrix is just a different
way of describing the system of equations. The array of coefficients of the variables




3 2 −1 1
2 0 −1 2
3 1 2 5





is called the coefficient matrix of the system and




−1

0
2



 is called the constant matrix of the system.

Elementary Operations

The algebraic method for solving systems of linear equations is described as follows. Two such systems
are said to be equivalent if they have the same set of solutions. A system is solved by writing a series of
systems, one after the other, each equivalent to the previous system. Each of these systems has the same
set of solutions as the original one; the aim is to end up with a system that is easy to solve. Each system
in the series is obtained from the preceding system by a simple manipulation chosen so that it does not
change the set of solutions.

As an illustration, we solve the system x+ 2y = −2, 2x+ y = 7 in this manner. At each stage, the
corresponding augmented matrix is displayed. The original system is

x+ 2y=−2
2x+ y= 7

[
1 2 −2
2 1 7

]

First, subtract twice the first equation from the second. The resulting system is

x+ 2y=−2
− 3y= 11

[
1 2 −2
0 −3 11

]

which is equivalent to the original (see Theorem 1.1.1). At this stage we obtain y = −11
3 by multiplying

the second equation by −1
3 . The result is the equivalent system

x+2y= −2
y=−11

3

[
1 2 −2
0 1 −11

3

]

Finally, we subtract twice the second equation from the first to get another equivalent system.

x= 16
3

y=−11
3



 1 0 16
3

0 1 −11
3





Now this system is easy to solve! And because it is equivalent to the original system, it provides the
solution to that system.

Observe that, at each stage, a certain operation is performed on the system (and thus on the augmented
matrix) to produce an equivalent system.
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Definition 1.1 Elementary Operations

The following operations, called elementary operations, can routinely be performed on systems
of linear equations to produce equivalent systems.

I. Interchange two equations.

II. Multiply one equation by a nonzero number.

III. Add a multiple of one equation to a different equation.

Theorem 1.1.1

Suppose that a sequence of elementary operations is performed on a system of linear equations.
Then the resulting system has the same set of solutions as the original, so the two systems are
equivalent.

The proof is given at the end of this section.

Elementary operations performed on a system of equations produce corresponding manipulations of
the rows of the augmented matrix. Thus, multiplying a row of a matrix by a number k means multiplying
every entry of the row by k. Adding one row to another row means adding each entry of that row to the
corresponding entry of the other row. Subtracting two rows is done similarly. Note that we regard two
rows as equal when corresponding entries are the same.

In hand calculations (and in computer programs) we manipulate the rows of the augmented matrix
rather than the equations. For this reason we restate these elementary operations for matrices.

Definition 1.2 Elementary Row Operations

The following are called elementary row operations on a matrix.

I. Interchange two rows.

II. Multiply one row by a nonzero number.

III. Add a multiple of one row to a different row.

In the illustration above, a series of such operations led to a matrix of the form
[

1 0 ∗
0 1 ∗

]

where the asterisks represent arbitrary numbers. In the case of three equations in three variables, the goal
is to produce a matrix of the form 


1 0 0 ∗
0 1 0 ∗
0 0 1 ∗




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This does not always happen, as we will see in the next section. Here is an example in which it does
happen.

Example 1.1.3

Find all solutions to the following system of equations.

3x+ 4y+ z= 1
2x+ 3y = 0
4x+ 3y− z=−2

Solution. The augmented matrix of the original system is



3 4 1 1
2 3 0 0
4 3 −1 −2





To create a 1 in the upper left corner we could multiply row 1 through by 1
3 . However, the 1 can be

obtained without introducing fractions by subtracting row 2 from row 1. The result is



1 1 1 1
2 3 0 0
4 3 −1 −2





The upper left 1 is now used to “clean up” the first column, that is create zeros in the other
positions in that column. First subtract 2 times row 1 from row 2 to obtain




1 1 1 1
0 1 −2 −2
4 3 −1 −2





Next subtract 4 times row 1 from row 3. The result is



1 1 1 1
0 1 −2 −2
0 −1 −5 −6





This completes the work on column 1. We now use the 1 in the second position of the second row
to clean up the second column by subtracting row 2 from row 1 and then adding row 2 to row 3.
For convenience, both row operations are done in one step. The result is




1 0 3 3
0 1 −2 −2
0 0 −7 −8





Note that the last two manipulations did not affect the first column (the second row has a zero
there), so our previous effort there has not been undermined. Finally we clean up the third column.
Begin by multiplying row 3 by −1

7 to obtain



1 0 3 3
0 1 −2 −2
0 0 1 8

7




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Now subtract 3 times row 3 from row 1, and then add 2 times row 3 to row 2 to get




1 0 0 −3
7

0 1 0 2
7

0 0 1 8
7





The corresponding equations are x =−3
7 , y = 2

7 , and z = 8
7 , which give the (unique) solution.

Every elementary row operation can be reversed by another elementary row operation of the same
type (called its inverse). To see how, we look at types I, II, and III separately:

Type I Interchanging two rows is reversed by interchanging them again.

Type II Multiplying a row by a nonzero number k is reversed by multiplying by 1/k.

Type III Adding k times row p to a different row q is reversed by adding −k times row p to row q

(in the new matrix). Note that p %= q is essential here.

To illustrate the Type III situation, suppose there are four rows in the original matrix, denoted R1, R2,
R3, and R4, and that k times R2 is added to R3. Then the reverse operation adds −k times R2, to R3. The
following diagram illustrates the effect of doing the operation first and then the reverse:





R1
R2
R3
R4



→





R1
R2

R3 + kR2
R4



→





R1
R2

(R3+ kR2)− kR2
R4



=





R1
R2
R3
R4





The existence of inverses for elementary row operations and hence for elementary operations on a system
of equations, gives:

Proof of Theorem 1.1.1. Suppose that a system of linear equations is transformed into a new system
by a sequence of elementary operations. Then every solution of the original system is automatically a
solution of the new system because adding equations, or multiplying an equation by a nonzero number,
always results in a valid equation. In the same way, each solution of the new system must be a solution
to the original system because the original system can be obtained from the new one by another series of
elementary operations (the inverses of the originals). It follows that the original and new systems have the
same solutions. This proves Theorem 1.1.1.
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Exercises for 1.1

Exercise 1.1.1 In each case verify that the following are
solutions for all values of s and t.

a. x= 19t−35
y= 25−13t

z= t

is a solution of

2x + 3y + z= 5
5x + 7y− 4z= 0

b. x1 = 2s+12t +13
x2 = s

x3 =−s−3t−3
x4 = t

is a solution of

2x1 + 5x2 + 9x3 + 3x4 =−1
x1 + 2x2 + 4x3 = 1

Exercise 1.1.2 Find all solutions to the following in
parametric form in two ways.

3x+ y = 2a. 2x+3y = 1b.

3x− y+2z = 5c. x−2y+5z = 1d.

Exercise 1.1.3 Regarding 2x = 5 as the equation
2x+ 0y = 5 in two variables, find all solutions in para-
metric form.

Exercise 1.1.4 Regarding 4x− 2y = 3 as the equation
4x− 2y+ 0z = 3 in three variables, find all solutions in
parametric form.

Exercise 1.1.5 Find all solutions to the general system
ax = b of one equation in one variable (a) when a = 0
and (b) when a %= 0.

Exercise 1.1.6 Show that a system consisting of exactly
one linear equation can have no solution, one solution, or
infinitely many solutions. Give examples.

Exercise 1.1.7 Write the augmented matrix for each of
the following systems of linear equations.

x− 3y= 5
2x + y= 1

a. x + 2y= 0
y= 1

b.

x− y+ z= 2
x− z= 1
y+ 2x = 0

c. x + y= 1
y+ z= 0
z− x= 2

d.

Exercise 1.1.8 Write a system of linear equations that
has each of the following augmented matrices.




1 −1 6 0
0 1 0 3
2 −1 0 1



a.




2 −1 0 −1
−3 2 1 0

0 1 1 3



b.

Exercise 1.1.9 Find the solution of each of the following
systems of linear equations using augmented matrices.

x− 3y= 1
2x− 7y= 3

a. x+ 2y = 1
3x + 4y =−1

b.

2x + 3y=−1
3x + 4y= 2

c. 3x + 4y = 1
4x + 5y =−3

d.

Exercise 1.1.10 Find the solution of each of the follow-
ing systems of linear equations using augmented matri-
ces.

x+ y+ 2z=−1
2x + y+ 3z= 0
− 2y+ z= 2

a. 2x + y+ z=−1
x+ 2y + z= 0

3x − 2z= 5

b.

Exercise 1.1.11 Find all solutions (if any) of the follow-
ing systems of linear equations.

3x−2y = 5
−12x+8y =−20

a. 3x−2y = 5
−12x+8y = 16

b.

Exercise 1.1.12 Show that the system





x + 2y − z = a

2x + y + 3z = b

x − 4y + 9z = c

is inconsistent unless c = 2b−3a.

Exercise 1.1.13 By examining the possible positions of
lines in the plane, show that two equations in two vari-
ables can have zero, one, or infinitely many solutions.
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Exercise 1.1.14 In each case either show that the state-
ment is true, or give an example2 showing it is false.

a. If a linear system has n variables and m equations,
then the augmented matrix has n rows.

b. A consistent linear system must have infinitely
many solutions.

c. If a row operation is done to a consistent linear
system, the resulting system must be consistent.

d. If a series of row operations on a linear system re-
sults in an inconsistent system, the original system
is inconsistent.

Exercise 1.1.15 Find a quadratic a+bx+ cx2 such that
the graph of y = a+bx+ cx2 contains each of the points
(−1, 6), (2, 0), and (3, 2).

Exercise 1.1.16 Solve the system
{

3x + 2y= 5
7x + 5y= 1

by

changing variables
{

x = 5x′ − 2y′

y=−7x′ + 3y′
and solving the re-

sulting equations for x′ and y′.

Exercise 1.1.17 Find a, b, and c such that

x2−x+3
(x2+2)(2x−1) =

ax+b
x2+2 +

c
2x−1

[Hint: Multiply through by (x2 + 2)(2x− 1) and equate
coefficients of powers of x.]

Exercise 1.1.18 A zookeeper wants to give an animal 42
mg of vitamin A and 65 mg of vitamin D per day. He has
two supplements: the first contains 10% vitamin A and
25% vitamin D; the second contains 20% vitamin A and
25% vitamin D. How much of each supplement should
he give the animal each day?

Exercise 1.1.19 Workmen John and Joe earn a total of
$24.60 when John works 2 hours and Joe works 3 hours.
If John works 3 hours and Joe works 2 hours, they get
$23.90. Find their hourly rates.

Exercise 1.1.20 A biologist wants to create a diet from
fish and meal containing 183 grams of protein and 93
grams of carbohydrate per day. If fish contains 70% pro-
tein and 10% carbohydrate, and meal contains 30% pro-
tein and 60% carbohydrate, how much of each food is
required each day?

1.2 Gaussian Elimination

The algebraic method introduced in the preceding section can be summarized as follows: Given a system
of linear equations, use a sequence of elementary row operations to carry the augmented matrix to a “nice”
matrix (meaning that the corresponding equations are easy to solve). In Example 1.1.3, this nice matrix
took the form 


1 0 0 ∗
0 1 0 ∗
0 0 1 ∗





The following definitions identify the nice matrices that arise in this process.

2Such an example is called a counterexample. For example, if the statement is that “all philosophers have beards”, the
existence of a non-bearded philosopher would be a counterexample proving that the statement is false. This is discussed again
in Appendix B.
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Definition 1.3 Row-Echelon Form (Reduced)

A matrix is said to be in row-echelon form (and will be called a row-echelon matrix) if it
satisfies the following three conditions:

1. All zero rows (consisting entirely of zeros) are at the bottom.

2. The first nonzero entry from the left in each nonzero row is a 1, called the leading 1 for that
row.

3. Each leading 1 is to the right of all leading 1s in the rows above it.

A row-echelon matrix is said to be in reduced row-echelon form (and will be called a reduced
row-echelon matrix) if, in addition, it satisfies the following condition:

4. Each leading 1 is the only nonzero entry in its column.

The row-echelon matrices have a “staircase” form, as indicated by the following example (the asterisks
indicate arbitrary numbers). 



0 1 ∗ ∗ ∗ ∗ ∗
0 0 0 1 ∗ ∗ ∗
0 0 0 0 1 ∗ ∗
0 0 0 0 0 0 1
0 0 0 0 0 0 0





The leading 1s proceed “down and to the right” through the matrix. Entries above and to the right of the
leading 1s are arbitrary, but all entries below and to the left of them are zero. Hence, a matrix in row-
echelon form is in reduced form if, in addition, the entries directly above each leading 1 are all zero. Note
that a matrix in row-echelon form can, with a few more row operations, be carried to reduced form (use
row operations to create zeros above each leading one in succession, beginning from the right).

Example 1.2.1

The following matrices are in row-echelon form (for any choice of numbers in ∗-positions).

[
1 ∗ ∗
0 0 1

]


0 1 ∗ ∗
0 0 1 ∗
0 0 0 0








1 ∗ ∗ ∗
0 1 ∗ ∗
0 0 0 1








1 ∗ ∗
0 1 ∗
0 0 1





The following, on the other hand, are in reduced row-echelon form.

[
1 ∗ 0
0 0 1

]


0 1 0 ∗
0 0 1 ∗
0 0 0 0








1 0 ∗ 0
0 1 ∗ 0
0 0 0 1








1 0 0
0 1 0
0 0 1





The choice of the positions for the leading 1s determines the (reduced) row-echelon form (apart
from the numbers in ∗-positions).

The importance of row-echelon matrices comes from the following theorem.
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Theorem 1.2.1

Every matrix can be brought to (reduced) row-echelon form by a sequence of elementary row
operations.

In fact we can give a step-by-step procedure for actually finding a row-echelon matrix. Observe that
while there are many sequences of row operations that will bring a matrix to row-echelon form, the one
we use is systematic and is easy to program on a computer. Note that the algorithm deals with matrices in
general, possibly with columns of zeros.

Gaussian3Algorithm4

Step 1. If the matrix consists entirely of zeros, stop—it is already in row-echelon form.

Step 2. Otherwise, find the first column from the left containing a nonzero entry (call it a),
and move the row containing that entry to the top position.

Step 3. Now multiply the new top row by 1/a to create a leading 1.

Step 4. By subtracting multiples of that row from rows below it, make each entry below the
leading 1 zero.

This completes the first row, and all further row operations are carried out on the remaining rows.

Step 5. Repeat steps 1–4 on the matrix consisting of the remaining rows.

The process stops when either no rows remain at step 5 or the remaining rows consist entirely of
zeros.

Observe that the gaussian algorithm is recursive: When the first leading 1 has been obtained, the
procedure is repeated on the remaining rows of the matrix. This makes the algorithm easy to use on a
computer. Note that the solution to Example 1.1.3 did not use the gaussian algorithm as written because
the first leading 1 was not created by dividing row 1 by 3. The reason for this is that it avoids fractions.
However, the general pattern is clear: Create the leading 1s from left to right, using each of them in turn
to create zeros below it. Here are two more examples.

3Carl Friedrich Gauss (1777–1855) ranks with Archimedes and Newton as one of the three greatest mathematicians of all
time. He was a child prodigy and, at the age of 21, he gave the first proof that every polynomial has a complex root. In
1801 he published a timeless masterpiece, Disquisitiones Arithmeticae, in which he founded modern number theory. He went
on to make ground-breaking contributions to nearly every branch of mathematics, often well before others rediscovered and
published the results.

4The algorithm was known to the ancient Chinese.
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Example 1.2.2

Solve the following system of equations.

3x+ y− 4z=−1
x + 10z= 5

4x+ y+ 6z= 1

Solution. The corresponding augmented matrix is



3 1 −4 −1
1 0 10 5
4 1 6 1





Create the first leading one by interchanging rows 1 and 2



1 0 10 5
3 1 −4 −1
4 1 6 1





Now subtract 3 times row 1 from row 2, and subtract 4 times row 1 from row 3. The result is



1 0 10 5
0 1 −34 −16
0 1 −34 −19





Now subtract row 2 from row 3 to obtain



1 0 10 5
0 1 −34 −16
0 0 0 −3





This means that the following reduced system of equations

x + 10z= 5
y− 34z=−16

0= −3

is equivalent to the original system. In other words, the two have the same solutions. But this last
system clearly has no solution (the last equation requires that x, y and z satisfy 0x+0y+0z =−3,
and no such numbers exist). Hence the original system has no solution.
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Example 1.2.3

Solve the following system of equations.

x1− 2x2− x3 + 3x4 = 1
2x1− 4x2 + x3 = 5

x1− 2x2 + 2x3− 3x4 = 4

Solution. The augmented matrix is



1 −2 −1 3 1
2 −4 1 0 5
1 −2 2 −3 4





Subtracting twice row 1 from row 2 and subtracting row 1 from row 3 gives



1 −2 −1 3 1
0 0 3 −6 3
0 0 3 −6 3





Now subtract row 2 from row 3 and multiply row 2 by 1
3 to get




1 −2 −1 3 1
0 0 1 −2 1
0 0 0 0 0





This is in row-echelon form, and we take it to reduced form by adding row 2 to row 1:



1 −2 0 1 2
0 0 1 −2 1
0 0 0 0 0





The corresponding reduced system of equations is

x1− 2x2 + x4 = 2
x3− 2x4 = 1

0= 0

The leading ones are in columns 1 and 3 here, so the corresponding variables x1 and x3 are called
leading variables. Because the matrix is in reduced row-echelon form, these equations can be used
to solve for the leading variables in terms of the nonleading variables x2 and x4. More precisely, in
the present example we set x2 = s and x4 = t where s and t are arbitrary, so these equations become

x1−2s+ t = 2 and x3−2t = 1

Finally the solutions are given by

x1 = 2+2s− t

x2 = s

x3 = 1+2t

x4 = t

where s and t are arbitrary.
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The solution of Example 1.2.3 is typical of the general case. To solve a linear system, the augmented
matrix is carried to reduced row-echelon form, and the variables corresponding to the leading ones are
called leading variables. Because the matrix is in reduced form, each leading variable occurs in exactly
one equation, so that equation can be solved to give a formula for the leading variable in terms of the
nonleading variables. It is customary to call the nonleading variables “free” variables, and to label them
by new variables s, t, . . . , called parameters. Hence, as in Example 1.2.3, every variable xi is given by a
formula in terms of the parameters s and t. Moreover, every choice of these parameters leads to a solution
to the system, and every solution arises in this way. This procedure works in general, and has come to be
called

Gaussian Elimination

To solve a system of linear equations proceed as follows:

1. Carry the augmented matrix to a reduced row-echelon matrix using elementary row
operations.

2. If a row
[

0 0 0 · · · 0 1
]

occurs, the system is inconsistent.

3. Otherwise, assign the nonleading variables (if any) as parameters, and use the equations
corresponding to the reduced row-echelon matrix to solve for the leading variables in terms
of the parameters.

There is a variant of this procedure, wherein the augmented matrix is carried only to row-echelon form.
The nonleading variables are assigned as parameters as before. Then the last equation (corresponding to
the row-echelon form) is used to solve for the last leading variable in terms of the parameters. This last
leading variable is then substituted into all the preceding equations. Then, the second last equation yields
the second last leading variable, which is also substituted back. The process continues to give the general
solution. This procedure is called back-substitution. This procedure can be shown to be numerically
more efficient and so is important when solving very large systems.5

Example 1.2.4

Find a condition on the numbers a, b, and c such that the following system of equations is
consistent. When that condition is satisfied, find all solutions (in terms of a, b, and c).

x1 + 3x2 + x3 = a

−x1− 2x2 + x3 = b

3x1 + 7x2− x3 = c

Solution. We use gaussian elimination except that now the augmented matrix



1 3 1 a

−1 −2 1 b

3 7 −1 c





5With n equations where n is large, gaussian elimination requires roughly n3/2 multiplications and divisions, whereas this
number is roughly n3/3 if back substitution is used.
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has entries a, b, and c as well as known numbers. The first leading one is in place, so we create
zeros below it in column 1: 


1 3 1 a

0 1 2 a+b

0 −2 −4 c−3a





The second leading 1 has appeared, so use it to create zeros in the rest of column 2:



1 0 −5 −2a−3b

0 1 2 a+b

0 0 0 c−a+2b





Now the whole solution depends on the number c−a+2b = c− (a−2b). The last row
corresponds to an equation 0 = c− (a−2b). If c %= a−2b, there is no solution (just as in Example
1.2.2). Hence:

The system is consistent if and only if c = a−2b.

In this case the last matrix becomes



1 0 −5 −2a−3b

0 1 2 a+b

0 0 0 0





Thus, if c = a−2b, taking x3 = t where t is a parameter gives the solutions

x1 = 5t− (2a+3b) x2 = (a+b)−2t x3 = t.

Rank

It can be proven that the reduced row-echelon form of a matrix A is uniquely determined by A. That is,
no matter which series of row operations is used to carry A to a reduced row-echelon matrix, the result
will always be the same matrix. (A proof is given at the end of Section 2.5.) By contrast, this is not
true for row-echelon matrices: Different series of row operations can carry the same matrix A to different

row-echelon matrices. Indeed, the matrix A =

[
1 −1 4
2 −1 2

]
can be carried (by one row operation) to

the row-echelon matrix
[

1 −1 4
0 1 −6

]
, and then by another row operation to the (reduced) row-echelon

matrix
[

1 0 −2
0 1 −6

]
. However, it is true that the number r of leading 1s must be the same in each of

these row-echelon matrices (this will be proved in Chapter 5). Hence, the number r depends only on A

and not on the way in which A is carried to row-echelon form.
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Definition 1.4 Rank of a Matrix

The rank of matrix A is the number of leading 1s in any row-echelon matrix to which A can be
carried by row operations.

Example 1.2.5

Compute the rank of A =




1 1 −1 4
2 1 3 0
0 1 −5 8



.

Solution. The reduction of A to row-echelon form is

A =




1 1 −1 4
2 1 3 0
0 1 −5 8



→




1 1 −1 4
0 −1 5 −8
0 1 −5 8



→




1 1 −1 4
0 1 −5 8
0 0 0 0





Because this row-echelon matrix has two leading 1s, rank A = 2.

Suppose that rank A = r, where A is a matrix with m rows and n columns. Then r ≤ m because the
leading 1s lie in different rows, and r ≤ n because the leading 1s lie in different columns. Moreover, the
rank has a useful application to equations. Recall that a system of linear equations is called consistent if it
has at least one solution.

Theorem 1.2.2

Suppose a system of m equations in n variables is consistent, and that the rank of the augmented
matrix is r.

1. The set of solutions involves exactly n− r parameters.

2. If r < n, the system has infinitely many solutions.

3. If r = n, the system has a unique solution.

Proof. The fact that the rank of the augmented matrix is r means there are exactly r leading variables, and
hence exactly n− r nonleading variables. These nonleading variables are all assigned as parameters in the
gaussian algorithm, so the set of solutions involves exactly n− r parameters. Hence if r < n, there is at
least one parameter, and so infinitely many solutions. If r = n, there are no parameters and so a unique
solution.

Theorem 1.2.2 shows that, for any system of linear equations, exactly three possibilities exist:

1. No solution. This occurs when a row
[

0 0 · · · 0 1
]

occurs in the row-echelon form. This is

the case where the system is inconsistent.

2. Unique solution. This occurs when every variable is a leading variable.
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3. Infinitely many solutions. This occurs when the system is consistent and there is at least one

nonleading variable, so at least one parameter is involved.

Example 1.2.6

Suppose the matrix A in Example 1.2.5 is the augmented matrix of a system of m = 3 linear
equations in n = 3 variables. As rank A = r = 2, the set of solutions will have n− r = 1 parameter.
The reader can verify this fact directly.

Many important problems involve linear inequalities rather than linear equations. For example, a
condition on the variables x and y might take the form of an inequality 2x−5y≤ 4 rather than an equality
2x−5y = 4. There is a technique (called the simplex algorithm) for finding solutions to a system of such
inequalities that maximizes a function of the form p = ax+by where a and b are fixed constants.

Exercises for 1.2

Exercise 1.2.1 Which of the following matrices are in
reduced row-echelon form? Which are in row-echelon
form?




1 −1 2
0 0 0
0 0 1



a.
[

2 1 −1 3
0 0 0 0

]
b.

[
1 −2 3 5
0 0 0 1

]
c.




1 0 0 3 1
0 0 0 1 1
0 0 0 0 1



d.

[
1 1
0 1

]
e.




0 0 1
0 0 1
0 0 1



f.

Exercise 1.2.2 Carry each of the following matrices to
reduced row-echelon form.

a.





0 −1 2 1 2 1 −1
0 1 −2 2 7 2 4
0 −2 4 3 7 1 0
0 3 −6 1 6 4 1





b.





0 −1 3 1 3 2 1
0 −2 6 1 −5 0 −1
0 3 −9 2 4 1 −1
0 1 −3 −1 3 0 1





Exercise 1.2.3 The augmented matrix of a system of
linear equations has been carried to the following by row
operations. In each case solve the system.

a.





1 2 0 3 1 0 −1
0 0 1 −1 1 0 2
0 0 0 0 0 1 3
0 0 0 0 0 0 0





b.





1 −2 0 2 0 1 1
0 0 1 5 0 −3 −1
0 0 0 0 1 6 1
0 0 0 0 0 0 0





c.





1 2 1 3 1 1
0 1 −1 0 1 1
0 0 0 1 −1 0
0 0 0 0 0 0





d.





1 −1 2 4 6 2
0 1 2 1 −1 −1
0 0 0 1 0 1
0 0 0 0 0 0





Exercise 1.2.4 Find all solutions (if any) to each of the
following systems of linear equations.

x− 2y= 1
4y− x=−2

a. 3x− y= 0
2x− 3y = 1

b.
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2x + y= 5
3x + 2y= 6

c. 3x− y= 2
2y− 6x=−4

d.

3x− y= 4
2y− 6x= 1

e. 2x− 3y= 5
3y− 2x= 2

f.

Exercise 1.2.5 Find all solutions (if any) to each of the
following systems of linear equations.

x+ y+ 2z = 8
3x− y+ z= 0
−x+ 3y+ 4z =−4

a. −2x+ 3y + 3z= −9
3x− 4y + z= 5
−5x+ 7y + 2z=−14

b.

x+ y− z= 10
−x+ 4y+ 5z =−5

x+ 6y+ 3z = 15

c. x + 2y− z= 2
2x + 5y− 3z = 1
x + 4y− 3z = 3

d.

5x + y = 2
3x− y+ 2z= 1

x+ y− z= 5

e. 3x− 2y+ z=−2
x− y+ 3z= 5
−x+ y+ z=−1

f.

x+ y+ z= 2
x + z= 1

2x + 5y+ 2z = 7

g. x + 2y− 4z = 10
2x− y+ 2z = 5
x + y− 2z = 7

h.

Exercise 1.2.6 Express the last equation of each system
as a sum of multiples of the first two equations. [Hint:
Label the equations, use the gaussian algorithm.]

x1 + x2 + x3 = 1
2x1 − x2 + 3x3 = 3

x1− 2x2 + 2x3 = 2

a. x1 + 2x2 − 3x3 = −3
x1 + 3x2 − 5x3 = 5
x1− 2x2 + 5x3 =−35

b.

Exercise 1.2.7 Find all solutions to the following sys-
tems.

a. 3x1 + 8x2 − 3x3 − 14x4 = 2
2x1 + 3x2 − x3− 2x4 = 1

x1− 2x2 + x3 + 10x4 = 0
x1 + 5x2 − 2x3 − 12x4 = 1

b. x1− x2 + x3− x4 = 0
−x1 + x2 + x3 + x4 = 0

x1 + x2 − x3 + x4 = 0
x1 + x2 + x3 + x4 = 0

c. x1− x2 + x3− 2x4 = 1
−x1 + x2 + x3 + x4 =−1
−x1 + 2x2 + 3x3 − x4 = 2

x1− x2 + 2x3 + x4 = 1

d. x1 + x2 + 2x3 − x4 = 4
3x2 − x3 + 4x4 = 2

x1 + 2x2 − 3x3 + 5x4 = 0
x1 + x2− 5x3 + 6x4 =−3

Exercise 1.2.8 In each of the following, find (if possi-
ble) conditions on a and b such that the system has no
solution, one solution, and infinitely many solutions.

x− 2y= 1
ax + by= 5

a. x+ by =−1
ax + 2y = 5

b.

x− by=−1
x+ ay= 3

c. ax + y= 1
2x + y= b

d.

Exercise 1.2.9 In each of the following, find (if possi-
ble) conditions on a, b, and c such that the system has no
solution, one solution, or infinitely many solutions.

3x + y− z= a

x− y+ 2z= b

5x + 3y− 4z= c

a. 2x + y− z= a

2y + 3z= b

x − z= c

b.

−x+ 3y + 2z=−8
x + z= 2

3x + 3y + az= b

c. x+ay= 0
y+bz= 0
z+ cx= 0

d.

3x− y+ 2z= 3
x+ y− z= 2

2x− 2y+ 3z= b

e.

x+ ay− z= 1
−x+ (a−2)y + z=−1
2x + 2y + (a−2)z= 1

f.

Exercise 1.2.10 Find the rank of each of the matrices in
Exercise 1.2.1.

Exercise 1.2.11 Find the rank of each of the following
matrices.




1 1 2
3 −1 1
−1 3 4



a.




−2 3 3

3 −4 1
−5 7 2



b.




1 1 −1 3
−1 4 5 −2

1 6 3 4



c.




3 −2 1 −2
1 −1 3 5
−1 1 1 −1



d.




1 2 −1 0
0 a 1−a a2 +1
1 2−a −1 −2a2



e.




1 1 2 a2

1 1−a 2 0
2 2−a 6−a 4



f.
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Exercise 1.2.12 Consider a system of linear equations
with augmented matrix A and coefficient matrix C. In
each case either prove the statement or give an example
showing that it is false.

a. If there is more than one solution, A has a row of
zeros.

b. If A has a row of zeros, there is more than one
solution.

c. If there is no solution, the reduced row-echelon
form of C has a row of zeros.

d. If the row-echelon form of C has a row of zeros,
there is no solution.

e. There is no system that is inconsistent for every
choice of constants.

f. If the system is consistent for some choice of con-
stants, it is consistent for every choice of con-
stants.

Now assume that the augmented matrix A has 3 rows and
5 columns.

g. If the system is consistent, there is more than one
solution.

h. The rank of A is at most 3.

i. If rank A = 3, the system is consistent.

j. If rank C = 3, the system is consistent.

Exercise 1.2.13 Find a sequence of row operations car-
rying



b1 + c1 b2 + c2 b3 + c3

c1 +a1 c2 +a2 c3 +a3

a1 +b1 a2 +b2 a3 +b3



 to




a1 a2 a3

b1 b2 b3

c1 c2 c3





Exercise 1.2.14 In each case, show that the reduced
row-echelon form is as given.

a.




p 0 a

b 0 0
q c r



 with abc %= 0;




1 0 0
0 1 0
0 0 1





b.




1 a b+ c

1 b c+a

1 c a+b



 where c %= a or b %= a;




1 0 ∗
0 1 ∗
0 0 0





Exercise 1.2.15 Show that
{

az+ by+ cz= 0
a1x+ b1y+ c1z= 0

al-

ways has a solution other than x = 0, y = 0, z = 0.

Exercise 1.2.16 Find the circle x2+y2+ax+by+c = 0
passing through the following points.

a. (−2, 1), (5, 0), and (4, 1)

b. (1, 1), (5, −3), and (−3, −3)

Exercise 1.2.17 Three Nissans, two Fords, and four
Chevrolets can be rented for $106 per day. At the same
rates two Nissans, four Fords, and three Chevrolets cost
$107 per day, whereas four Nissans, three Fords, and two
Chevrolets cost $102 per day. Find the rental rates for all
three kinds of cars.

Exercise 1.2.18 A school has three clubs and each stu-
dent is required to belong to exactly one club. One year
the students switched club membership as follows:

Club A. 4
10 remain in A, 1

10 switch to B, 5
10 switch to C.

Club B. 7
10 remain in B, 2

10 switch to A, 1
10 switch to C.

Club C. 6
10 remain in C, 2

10 switch to A, 2
10 switch to B.

If the fraction of the student population in each club
is unchanged, find each of these fractions.

Exercise 1.2.19 Given points (p1, q1), (p2, q2), and
(p3, q3) in the plane with p1, p2, and p3 distinct, show
that they lie on some curve with equation y = a+ bx+
cx2. [Hint: Solve for a, b, and c.]

Exercise 1.2.20 The scores of three players in a tour-
nament have been lost. The only information available
is the total of the scores for players 1 and 2, the total for
players 2 and 3, and the total for players 3 and 1.

a. Show that the individual scores can be rediscov-
ered.

b. Is this possible with four players (knowing the to-
tals for players 1 and 2, 2 and 3, 3 and 4, and 4 and
1)?

Exercise 1.2.21 A boy finds $1.05 in dimes, nickels,
and pennies. If there are 17 coins in all, how many coins
of each type can he have?

Exercise 1.2.22 If a consistent system has more vari-
ables than equations, show that it has infinitely many so-
lutions. [Hint: Use Theorem 1.2.2.]
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1.3 Homogeneous Equations

A system of equations in the variables x1, x2, . . . , xn is called homogeneous if all the constant terms are
zero—that is, if each equation of the system has the form

a1x1 +a2x2 + · · ·+anxn = 0

Clearly x1 = 0, x2 = 0, . . . , xn = 0 is a solution to such a system; it is called the trivial solution. Any
solution in which at least one variable has a nonzero value is called a nontrivial solution. Our chief goal
in this section is to give a useful condition for a homogeneous system to have nontrivial solutions. The
following example is instructive.

Example 1.3.1

Show that the following homogeneous system has nontrivial solutions.

x1− x2 + 2x3− x4 = 0
2x1 + 2x2 + x4 = 0
3x1 + x2 + 2x3− x4 = 0

Solution. The reduction of the augmented matrix to reduced row-echelon form is outlined below.



1 −1 2 −1 0
2 2 0 1 0
3 1 2 −1 0



→




1 −1 2 −1 0
0 4 −4 3 0
0 4 −4 2 0



→




1 0 1 0 0
0 1 −1 0 0
0 0 0 1 0





The leading variables are x1, x2, and x4, so x3 is assigned as a parameter—say x3 = t. Then the
general solution is x1 =−t, x2 = t, x3 = t, x4 = 0. Hence, taking t = 1 (say), we get a nontrivial
solution: x1 =−1, x2 = 1, x3 = 1, x4 = 0.

The existence of a nontrivial solution in Example 1.3.1 is ensured by the presence of a parameter in the
solution. This is due to the fact that there is a nonleading variable (x3 in this case). But there must be
a nonleading variable here because there are four variables and only three equations (and hence at most

three leading variables). This discussion generalizes to a proof of the following fundamental theorem.

Theorem 1.3.1

If a homogeneous system of linear equations has more variables than equations, then it has a
nontrivial solution (in fact, infinitely many).

Proof. Suppose there are m equations in n variables where n>m, and let R denote the reduced row-echelon
form of the augmented matrix. If there are r leading variables, there are n−r nonleading variables, and so
n− r parameters. Hence, it suffices to show that r < n. But r ≤ m because R has r leading 1s and m rows,
and m < n by hypothesis. So r ≤ m < n, which gives r < n.
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Note that the converse of Theorem 1.3.1 is not true: if a homogeneous system has nontrivial solutions,
it need not have more variables than equations (the system x1 + x2 = 0, 2x1 + 2x2 = 0 has nontrivial
solutions but m = 2 = n.)

Theorem 1.3.1 is very useful in applications. The next example provides an illustration from geometry.

Example 1.3.2

We call the graph of an equation ax2 +bxy+ cy2 +dx+ ey+ f = 0 a conic if the numbers a, b, and
c are not all zero. Show that there is at least one conic through any five points in the plane that are
not all on a line.

Solution. Let the coordinates of the five points be (p1, q1), (p2, q2), (p3, q3), (p4, q4), and
(p5, q5). The graph of ax2 +bxy+ cy2 +dx+ ey+ f = 0 passes through (pi, qi) if

ap2
i +bpiqi + cq2

i +dpi + eqi + f = 0

This gives five equations, one for each i, linear in the six variables a, b, c, d, e, and f . Hence, there
is a nontrivial solution by Theorem 1.3.1. If a = b = c = 0, the five points all lie on the line with
equation dx+ ey+ f = 0, contrary to assumption. Hence, one of a, b, c is nonzero.

Linear Combinations and Basic Solutions

As for rows, two columns are regarded as equal if they have the same number of entries and corresponding
entries are the same. Let x and y be columns with the same number of entries. As for elementary row
operations, their sum x+y is obtained by adding corresponding entries and, if k is a number, the scalar

product kx is defined by multiplying each entry of x by k. More precisely:

If x =





x1
x2
...

xn




and y =





y1
y2
...

yn




then x+y =





x1 + y1
x2 + y2

...
xn + yn




and kx =





kx1
kx2

...
kxn




.

A sum of scalar multiples of several columns is called a linear combination of these columns. For
example, sx+ ty is a linear combination of x and y for any choice of numbers s and t.

Example 1.3.3

If x =

[
3
−2

]
and

[
−1

1

]
then 2x+5y =

[
6
−4

]
+

[
−5

5

]
=

[
1
1

]
.
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Example 1.3.4

Let x =




1
0
1



 , y =




2
1
0



 and z =




3
1
1



. If v =




0
−1

2



 and w =




1
1
1



, determine whether v

and w are linear combinations of x, y and z.

Solution. For v, we must determine whether numbers r, s, and t exist such that v = rx+ sy+ tz,
that is, whether




0
−1

2



= r




1
0
1



+ s




2
1
0



+ t




3
1
1



=




r+2s+3t

s+ t

r+ t





Equating corresponding entries gives a system of linear equations r+2s+3t = 0, s+ t =−1, and
r+ t = 2 for r, s, and t. By gaussian elimination, the solution is r = 2− k, s =−1− k, and t = k

where k is a parameter. Taking k = 0, we see that v = 2x−y is a linear combination of x, y, and z.
Turning to w, we again look for r, s, and t such that w = rx+ sy+ tz; that is,




1
1
1



= r




1
0
1



+ s




2
1
0



+ t




3
1
1



=




r+2s+3t

s+ t

r+ t





leading to equations r+2s+3t = 1, s+ t = 1, and r+ t = 1 for real numbers r, s, and t. But this
time there is no solution as the reader can verify, so w is not a linear combination of x, y, and z.

Our interest in linear combinations comes from the fact that they provide one of the best ways to
describe the general solution of a homogeneous system of linear equations. When solving such a system

with n variables x1, x2, . . . , xn, write the variables as a column6 matrix: x =





x1
x2
...

xn




. The trivial solution

is denoted 0 =





0
0
...
0




. As an illustration, the general solution in Example 1.3.1 is x1 =−t, x2 = t, x3 = t,

and x4 = 0, where t is a parameter, and we would now express this by saying that the general solution is

x =





−t

t

t

0



, where t is arbitrary.

Now let x and y be two solutions to a homogeneous system with n variables. Then any linear combi-
nation sx+ ty of these solutions turns out to be again a solution to the system. More generally:

Any linear combination of solutions to a homogeneous system is again a solution. (1.1)

6The reason for using columns will be apparent later.
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In fact, suppose that a typical equation in the system is a1x1 +a2x2 + · · ·+anxn = 0, and suppose that

x =





x1
x2
...

xn




, y =





y1
y2
...

yn




are solutions. Then a1x1+a2x2+ · · ·+anxn = 0 and a1y1+a2y2+ · · ·+anyn = 0.

Hence sx+ ty =





sx1 + ty1
sx2 + ty2

...
sxn + tyn




is also a solution because

a1(sx1 + ty1)+a2(sx2 + ty2)+ · · ·+an(sxn + tyn)

= [a1(sx1)+a2(sx2)+ · · ·+an(sxn)]+ [a1(ty1)+a2(ty2)+ · · ·+an(tyn)]

= s(a1x1 +a2x2 + · · ·+anxn)+ t(a1y1 +a2y2 + · · ·+anyn)

= s(0)+ t(0)

= 0

A similar argument shows that Statement 1.1 is true for linear combinations of more than two solutions.

The remarkable thing is that every solution to a homogeneous system is a linear combination of certain
particular solutions and, in fact, these solutions are easily computed using the gaussian algorithm. Here is
an example.

Example 1.3.5

Solve the homogeneous system with coefficient matrix

A =




1 −2 3 −2
−3 6 1 0
−2 4 4 −2





Solution. The reduction of the augmented matrix to reduced form is




1 −2 3 −2 0
−3 6 1 0 0
−2 4 4 −2 0



→





1 −2 0 −1
5 0

0 0 1 −3
5 0

0 0 0 0 0





so the solutions are x1 = 2s+ 1
5 t, x2 = s, x3 =

3
5 , and x4 = t by gaussian elimination. Hence we can

write the general solution x in the matrix form

x =





x1
x2
x3
x4



=





2s+ 1
5t

s
3
5t

t



= s





2
1
0
0



+ t





1
5
0
3
5
1



= sx1 + tx2.
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Here x1 =





2
1
0
0



 and x2 =





1
5
0
3
5
1



 are particular solutions determined by the gaussian algorithm.

The solutions x1 and x2 in Example 1.3.5 are denoted as follows:

Definition 1.5 Basic Solutions

The gaussian algorithm systematically produces solutions to any homogeneous linear system,
called basic solutions, one for every parameter.

Moreover, the algorithm gives a routine way to express every solution as a linear combination of basic
solutions as in Example 1.3.5, where the general solution x becomes

x = s





2
1
0
0



+ t





1
5
0
3
5
1



= s





2
1
0
0



+
1
5t





1
0
3
5





Hence by introducing a new parameter r = t/5 we can multiply the original basic solution x2 by 5 and so
eliminate fractions. For this reason:

Convention:

Any nonzero scalar multiple of a basic solution will still be called a basic solution.

In the same way, the gaussian algorithm produces basic solutions to every homogeneous system, one
for each parameter (there are no basic solutions if the system has only the trivial solution). Moreover every
solution is given by the algorithm as a linear combination of these basic solutions (as in Example 1.3.5).
If A has rank r, Theorem 1.2.2 shows that there are exactly n− r parameters, and so n− r basic solutions.
This proves:

Theorem 1.3.2

Let A be an m×n matrix of rank r, and consider the homogeneous system in n variables with A as
coefficient matrix. Then:

1. The system has exactly n− r basic solutions, one for each parameter.

2. Every solution is a linear combination of these basic solutions.
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Example 1.3.6

Find basic solutions of the homogeneous system with coefficient matrix A, and express every
solution as a linear combination of the basic solutions, where

A =





1 −3 0 2 2
−2 6 1 2 −5

3 −9 −1 0 7
−3 9 2 6 −8





Solution. The reduction of the augmented matrix to reduced row-echelon form is




1 −3 0 2 2 0
−2 6 1 2 −5 0

3 −9 −1 0 7 0
−3 9 2 6 −8 0



→





1 −3 0 2 2 0
0 0 1 6 −1 0
0 0 0 0 0 0
0 0 0 0 0 0





so the general solution is x1 = 3r−2s−2t, x2 = r, x3 =−6s+ t, x4 = s, and x5 = t where r, s, and
t are parameters. In matrix form this is

x =





x1
x2
x3
x4
x5




=





3r−2s−2t

r

−6s+ t

s

t




= r





3
1
0
0
0




+ s





−2
0
−6

1
0




+ t





−2
0
1
0
1





Hence basic solutions are

x1 =





3
1
0
0
0




, x2 =





−2
0
−6

1
0




, x3 =





−2
0
1
0
1




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Exercises for 1.3

Exercise 1.3.1 Consider the following statements about
a system of linear equations with augmented matrix A. In
each case either prove the statement or give an example
for which it is false.

a. If the system is homogeneous, every solution is
trivial.

b. If the system has a nontrivial solution, it cannot be
homogeneous.

c. If there exists a trivial solution, the system is ho-
mogeneous.

d. If the system is consistent, it must be homoge-
neous.

Now assume that the system is homogeneous.

e. If there exists a nontrivial solution, there is no triv-
ial solution.

f. If there exists a solution, there are infinitely many
solutions.

g. If there exist nontrivial solutions, the row-echelon
form of A has a row of zeros.

h. If the row-echelon form of A has a row of zeros,
there exist nontrivial solutions.

i. If a row operation is applied to the system, the new
system is also homogeneous.

Exercise 1.3.2 In each of the following, find all values
of a for which the system has nontrivial solutions, and
determine all solutions in each case.

x− 2y+ z= 0
x+ ay− 3z = 0
−x+ 6y− 5z = 0

a. x + 2y+ z= 0
x + 3y+ 6z = 0

2x + 3y+ az = 0

b.

x + y− z= 0
ay− z= 0

x + y+ az= 0

c. ax + y+ z= 0
x + y− z= 0
x + y+ az= 0

d.

Exercise 1.3.3 Let x =




2
1
−1



, y =




1
0
1



, and

z=




1
1
−2



. In each case, either write v as a linear com-

bination of x, y, and z, or show that it is not such a linear
combination.

v =




0
1
−3



a. v =




4
3
−4



b.

v =




3
1
0



c. v =




3
0
3



d.

Exercise 1.3.4 In each case, either express y as a linear
combination of a1, a2, and a3, or show that it is not such
a linear combination. Here:

a1 =





−1
3
0
1



 , a2 =





3
1
2
0



 , and a3 =





1
1
1
1





y =





1
2
4
0



a. y =





−1
9
2
6



b.

Exercise 1.3.5 For each of the following homogeneous
systems, find a set of basic solutions and express the gen-
eral solution as a linear combination of these basic solu-
tions.

a. x1 + 2x2− x3 + 2x4 + x5 = 0
x1 + 2x2 + 2x3 + x5 = 0

2x1 + 4x2− 2x3 + 3x4 + x5 = 0

b. x1 + 2x2 − x3 + x4 + x5 = 0
−x1− 2x2 + 2x3 + x5 = 0
−x1− 2x2 + 3x3 + x4 + 3x5 = 0

c. x1 + x2− x3 + 2x4 + x5 = 0
x1 + 2x2− x3 + x4 + x5 = 0

2x1 + 3x2− x3 + 2x4 + x5 = 0
4x1 + 5x2− 2x3 + 5x4 + 2x5 = 0
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d. x1 + x2 − 2x3 − 2x4 + 2x5 = 0
2x1 + 2x2 − 4x3 − 4x4 + x5 = 0
x1 − x2 + 2x3 + 4x4 + x5 = 0

−2x1 − 4x2 + 8x3 + 10x4 + x5 = 0

Exercise 1.3.6

a. Does Theorem 1.3.1 imply that the system{
−z+3y= 0
2x−6y = 0

has nontrivial solutions? Explain.

b. Show that the converse to Theorem 1.3.1 is not
true. That is, show that the existence of nontrivial
solutions does not imply that there are more vari-
ables than equations.

Exercise 1.3.7 In each case determine how many solu-
tions (and how many parameters) are possible for a ho-
mogeneous system of four linear equations in six vari-
ables with augmented matrix A. Assume that A has
nonzero entries. Give all possibilities.

Rank A = 2.a. Rank A = 1.b.

A has a row of zeros.c.

The row-echelon form of A has a row of zeros.d.

Exercise 1.3.8 The graph of an equation ax+by+cz= 0
is a plane through the origin (provided that not all of a,
b, and c are zero). Use Theorem 1.3.1 to show that two
planes through the origin have a point in common other
than the origin (0, 0, 0).

Exercise 1.3.9

a. Show that there is a line through any pair of points
in the plane. [Hint: Every line has equation
ax+by+c = 0, where a, b, and c are not all zero.]

b. Generalize and show that there is a plane ax+by+
cz+d = 0 through any three points in space.

Exercise 1.3.10 The graph of

a(x2 + y2)+bx+ cy+d = 0

is a circle if a %= 0. Show that there is a circle through any
three points in the plane that are not all on a line.

Exercise 1.3.11 Consider a homogeneous system of lin-
ear equations in n variables, and suppose that the aug-
mented matrix has rank r. Show that the system has non-
trivial solutions if and only if n > r.

Exercise 1.3.12 If a consistent (possibly nonhomoge-
neous) system of linear equations has more variables than
equations, prove that it has more than one solution.

1.4 An Application to Network Flow

There are many types of problems that concern a network of conductors along which some sort of flow
is observed. Examples of these include an irrigation network and a network of streets or freeways. There
are often points in the system at which a net flow either enters or leaves the system. The basic principle
behind the analysis of such systems is that the total flow into the system must equal the total flow out. In
fact, we apply this principle at every junction in the system.

Junction Rule

At each of the junctions in the network, the total flow into that junction must equal the total flow
out.

This requirement gives a linear equation relating the flows in conductors emanating from the junction.
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Example 1.4.1

A network of one-way streets is shown in the accompanying diagram. The rate of flow of cars into
intersection A is 500 cars per hour, and 400 and 100 cars per hour emerge from B and C,
respectively. Find the possible flows along each street.

A B

D

C

500 400

100

f1

f2

f3

f4

f5

f6

Solution. Suppose the flows along the streets are f1, f2, f3, f4,
f5, and f6 cars per hour in the directions shown.
Then, equating the flow in with the flow out at each intersection,
we get

Intersection A 500= f1 + f2 + f3
Intersection B f1 + f4 + f6 = 400
Intersection C f3 + f5 = f6 +100
Intersection D f2 = f4 + f5

These give four equations in the six variables f1, f2, . . . , f6.

f1 + f2 + f3 = 500
f1 + f4 + f6 = 400

f3 + f5− f6 = 100
f2 − f4− f5 = 0

The reduction of the augmented matrix is




1 1 1 0 0 0 500
1 0 0 1 0 1 400
0 0 1 0 1 −1 100
0 1 0 −1 −1 0 0



→





1 0 0 1 0 1 400
0 1 0 −1 −1 0 0
0 0 1 0 1 −1 100
0 0 0 0 0 0 0





Hence, when we use f4, f5, and f6 as parameters, the general solution is

f1 = 400− f4− f6 f2 = f4 + f5 f3 = 100− f5 + f6

This gives all solutions to the system of equations and hence all the possible flows.
Of course, not all these solutions may be acceptable in the real situation. For example, the flows
f1, f2, . . . , f6 are all positive in the present context (if one came out negative, it would mean traffic
flowed in the opposite direction). This imposes constraints on the flows: f1 ≥ 0 and f3 ≥ 0 become

f4 + f6 ≤ 400 f5− f6 ≤ 100

Further constraints might be imposed by insisting on maximum values on the flow in each street.
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Exercises for 1.4

Exercise 1.4.1 Find the possible flows in each of the fol-
lowing networks of pipes.

a.

50

40
60

50

f1 f2

f3

f4 f5

b.

25

50

75 60

40

f1 f2

f3 f4

f5
f6

f7

Exercise 1.4.2 A proposed network of irrigation canals
is described in the accompanying diagram. At peak de-
mand, the flows at interchanges A, B, C, and D are as
shown.

A

B

C

D

f1

f2

f3

f4 f5

55

20

15

20

a. Find the possible flows.

b. If canal BC is closed, what range of flow on AD

must be maintained so that no canal carries a flow
of more than 30?

Exercise 1.4.3 A traffic circle has five one-way streets,
and vehicles enter and leave as shown in the accompany-
ing diagram.

f1 f2

f3

f4
f5

50

30

40

2535

A

B

C

DE

a. Compute the possible flows.

b. Which road has the heaviest flow?

1.5 An Application to Electrical Networks7

In an electrical network it is often necessary to find the current in amperes (A) flowing in various parts of
the network. These networks usually contain resistors that retard the current. The resistors are indicated
by a symbol ( ), and the resistance is measured in ohms (Ω). Also, the current is increased at various
points by voltage sources (for example, a battery). The voltage of these sources is measured in volts (V),

7This section is independent of Section 1.4
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and they are represented by the symbol ( ). We assume these voltage sources have no resistance. The
flow of current is governed by the following principles.

Ohm’s Law

The current I and the voltage drop V across a resistance R are related by the equation V = RI.

Kirchhoff’s Laws

1. (Junction Rule) The current flow into a junction equals the current flow out of that junction.

2. (Circuit Rule) The algebraic sum of the voltage drops (due to resistances) around any closed
circuit of the network must equal the sum of the voltage increases around the circuit.

When applying rule 2, select a direction (clockwise or counterclockwise) around the closed circuit and
then consider all voltages and currents positive when in this direction and negative when in the opposite
direction. This is why the term algebraic sum is used in rule 2. Here is an example.

Example 1.5.1

Find the various currents in the circuit shown.

Solution.

10 V

20Ω

I1 I6

5 V

I2 5Ω

I4

20 V

10Ω

I3

10 V

I5

5Ω

D

A

B

C

First apply the junction rule at junctions A, B, C, and D to obtain

Junction A I1 = I2 + I3
Junction B I6 = I1 + I5
Junction C I2 + I4 = I6
Junction D I3 + I5 = I4

Note that these equations are not independent
(in fact, the third is an easy consequence of the other three).
Next, the circuit rule insists that the sum of the voltage increases
(due to the sources) around a closed circuit must equal the sum of
the voltage drops (due to resistances). By Ohm’s law, the voltage

loss across a resistance R (in the direction of the current I) is RI. Going counterclockwise around
three closed circuits yields

Upper left 10+ 5= 20I1
Upper right −5+ 20= 10I3+5I4
Lower −10=−20I5−5I4

Hence, disregarding the redundant equation obtained at junction C, we have six equations in the
six unknowns I1, . . . , I6. The solution is
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I1 =
15
20 I4 =

28
20

I2 =
−1
20 I5 =

12
20

I3 =
16
20 I6 =

27
20

The fact that I2 is negative means, of course, that this current is in the opposite direction, with a
magnitude of 1

20 amperes.

Exercises for 1.5

In Exercises 1 to 4, find the currents in the circuits.

Exercise 1.5.1

20 V

6Ω I1

4Ω

I2

10 V

2Ω
I3

Exercise 1.5.2

5 V
I1

5Ω

10Ω

I2

5Ω I3 10 V

Exercise 1.5.3

10Ω

10 V

5 V

I2

5 V
I1

10ΩI4

5 V

I520Ω

I3

20Ω

I6

20 V

Exercise 1.5.4 All resistances are 10Ω.

20 V

I1

I4I6

I2

I5

I3

10 V

Exercise 1.5.5

Find the voltage x such that the current I1 = 0.

x V

I3

5 V

2Ω

1Ω

2 V
I2

I1

1Ω
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1.6 An Application to Chemical Reactions

When a chemical reaction takes place a number of molecules combine to produce new molecules. Hence,
when hydrogen H2 and oxygen O2 molecules combine, the result is water H2O. We express this as

H2 +O2→ H2O

Individual atoms are neither created nor destroyed, so the number of hydrogen and oxygen atoms going
into the reaction must equal the number coming out (in the form of water). In this case the reaction is
said to be balanced. Note that each hydrogen molecule H2 consists of two atoms as does each oxygen
molecule O2, while a water molecule H2O consists of two hydrogen atoms and one oxygen atom. In the
above reaction, this requires that twice as many hydrogen molecules enter the reaction; we express this as
follows:

2H2 +O2→ 2H2O

This is now balanced because there are 4 hydrogen atoms and 2 oxygen atoms on each side of the reaction.

Example 1.6.1

Balance the following reaction for burning octane C8H18 in oxygen O2:

C8H18 +O2→ CO2 +H2O

where CO2 represents carbon dioxide. We must find positive integers x, y, z, and w such that

xC8H18 + yO2→ zCO2 +wH2O

Equating the number of carbon, hydrogen, and oxygen atoms on each side gives 8x = z, 18x = 2w

and 2y = 2z+w, respectively. These can be written as a homogeneous linear system

8x − z = 0
18x − 2w= 0

2y− 2z− w= 0

which can be solved by gaussian elimination. In larger systems this is necessary but, in such a
simple situation, it is easier to solve directly. Set w = t, so that x = 1

9 t, z = 8
9t, 2y = 16

9 t + t = 25
9 t.

But x, y, z, and w must be positive integers, so the smallest value of t that eliminates fractions is 18.
Hence, x = 2, y = 25, z = 16, and w = 18, and the balanced reaction is

2C8H18 +25O2→ 16CO2 +18H2O

The reader can verify that this is indeed balanced.

It is worth noting that this problem introduces a new element into the theory of linear equations: the
insistence that the solution must consist of positive integers.
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Exercises for 1.6

In each case balance the chemical reaction.

Exercise 1.6.1 CH4 +O2 → CO2 +H2O. This is the
burning of methane CH4.

Exercise 1.6.2 NH3 +CuO→ N2 +Cu+H2O. Here
NH3 is ammonia, CuO is copper oxide, Cu is copper,
and N2 is nitrogen.

Exercise 1.6.3 CO2 + H2O → C6H12O6 + O2. This
is called the photosynthesis reaction—C6H12O6 is glu-
cose.

Exercise 1.6.4 Pb(N3)2 + Cr(MnO4)2 → Cr2O3 +
MnO2 +Pb3O4 +NO.

Supplementary Exercises for Chapter 1

Exercise 1.1 We show in Chapter 4 that the graph of an
equation ax+by+cz = d is a plane in space when not all
of a, b, and c are zero.

a. By examining the possible positions of planes in
space, show that three equations in three variables
can have zero, one, or infinitely many solutions.

b. Can two equations in three variables have a unique
solution? Give reasons for your answer.

Exercise 1.2 Find all solutions to the following systems
of linear equations.

a. x1 + x2 + x3 − x4 = 3
3x1 + 5x2 − 2x3 + x4 = 1
−3x1 − 7x2 + 7x3 − 5x4 = 7

x1 + 3x2 − 4x3 + 3x4 =−5

b. x1 + 4x2− x3 + x4 = 2
3x1 + 2x2 + x3 + 2x4 = 5

x1− 6x2 + 3x3 = 1
x1 + 14x2 − 5x3 + 2x4 = 3

Exercise 1.3 In each case find (if possible) conditions
on a, b, and c such that the system has zero, one, or in-
finitely many solutions.

x+ 2y− 4z= 4
3x− y+ 13z = 2
4x + y+ a2z= a+3

a. x + y+ 3z = a

ax + y+ 5z = 4
x + ay+ 4z = a

b.

Exercise 1.4 Show that any two rows of a matrix can be
interchanged by elementary row transformations of the
other two types.

Exercise 1.5 If ad %= bc, show that
[

a b

c d

]
has re-

duced row-echelon form
[

1 0
0 1

]
.

Exercise 1.6 Find a, b, and c so that the system

x + ay+ cz= 0
bx + cy− 3z = 1
ax + 2y+ bz = 5

has the solution x = 3, y =−1, z = 2.

Exercise 1.7 Solve the system

x+ 2y+ 2z =−3
2x+ y+ z=−4
x− y+ iz = i

where i2 =−1. [See Appendix A.]

Exercise 1.8 Show that the real system





x+ y+ z= 5
2x− y− z= 1
−3x+ 2y+ 2z = 0

has a complex solution: x = 2, y = i, z = 3− i where
i2 = −1. Explain. What happens when such a real sys-
tem has a unique solution?
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Exercise 1.9 A man is ordered by his doctor to take 5
units of vitamin A, 13 units of vitamin B, and 23 units
of vitamin C each day. Three brands of vitamin pills are
available, and the number of units of each vitamin per
pill are shown in the accompanying table.

Vitamin

Brand A B C

1 1 2 4
2 1 1 3
3 0 1 1

a. Find all combinations of pills that provide exactly
the required amount of vitamins (no partial pills
allowed).

b. If brands 1, 2, and 3 cost 3¢, 2¢, and 5¢ per pill,
respectively, find the least expensive treatment.

Exercise 1.10 A restaurant owner plans to use x tables
seating 4, y tables seating 6, and z tables seating 8, for a
total of 20 tables. When fully occupied, the tables seat
108 customers. If only half of the x tables, half of the y

tables, and one-fourth of the z tables are used, each fully
occupied, then 46 customers will be seated. Find x, y,
and z.

Exercise 1.11

a. Show that a matrix with two rows and two
columns that is in reduced row-echelon form must
have one of the following forms:

[
1 0
0 1

][
0 1
0 0

][
0 0
0 0

][
1 ∗
0 0

]

[Hint: The leading 1 in the first row must be in
column 1 or 2 or not exist.]

b. List the seven reduced row-echelon forms for ma-
trices with two rows and three columns.

c. List the four reduced row-echelon forms for ma-
trices with three rows and two columns.

Exercise 1.12 An amusement park charges $7 for
adults, $2 for youths, and $0.50 for children. If 150 peo-
ple enter and pay a total of $100, find the numbers of
adults, youths, and children. [Hint: These numbers are
nonnegative integers.]

Exercise 1.13 Solve the following system of equations
for x and y.

x2 + xy− y2 = 1
2x2 − xy+ 3y2 = 13
x2 + 3xy + 2y2 = 0

[Hint: These equations are linear in the new variables
x1 = x2, x2 = xy, and x3 = y2.]


