
A. Complex Numbers

The fact that the square of every real number is nonnegative shows that the equation x2+1 = 0 has no real
root; in other words, there is no real number u such that u2 =−1. So the set of real numbers is inadequate
for finding all roots of all polynomials. This kind of problem arises with other number systems as well.
The set of integers contains no solution of the equation 3x+ 2 = 0, and the rational numbers had to be
invented to solve such equations. But the set of rational numbers is also incomplete because, for example,
it contains no root of the polynomial x2−2. Hence the real numbers were invented. In the same way, the
set of complex numbers was invented, which contains all real numbers together with a root of the equation
x2+1 = 0. However, the process ends here: the complex numbers have the property that every polynomial
with complex coefficients has a (complex) root. This fact is known as the fundamental theorem of algebra.

One pleasant aspect of the complex numbers is that, whereas describing the real numbers in terms of
the rationals is a rather complicated business, the complex numbers are quite easy to describe in terms of
real numbers. Every complex number has the form

a+bi

where a and b are real numbers, and i is a root of the polynomial x2 +1. Here a and b are called the real

part and the imaginary part of the complex number, respectively. The real numbers are now regarded as
special complex numbers of the form a+0i = a, with zero imaginary part. The complex numbers of the
form 0+bi = bi with zero real part are called pure imaginary numbers. The complex number i itself is
called the imaginary unit and is distinguished by the fact that

i2 =−1

As the terms complex and imaginary suggest, these numbers met with some resistance when they were
first used. This has changed; now they are essential in science and engineering as well as mathematics,
and they are used extensively. The names persist, however, and continue to be a bit misleading: These
numbers are no more “complex” than the real numbers, and the number i is no more “imaginary” than −1.

Much as for polynomials, two complex numbers are declared to be equal if and only if they have the
same real parts and the same imaginary parts. In symbols,

a+bi = a′+b′i if and only if a = a′ and b = b′

The addition and subtraction of complex numbers is accomplished by adding and subtracting real and
imaginary parts:

(a+bi)+(a′+b′i) = (a+a′)+(b+b′)i

(a+bi)− (a′+b′i) = (a−a′)+(b−b′)i

This is analogous to these operations for linear polynomials a+bx and a′+b′x, and the multiplication of
complex numbers is also analogous with one difference: i2 =−1. The definition is

(a+bi)(a′+b′i) = (aa′ −bb′)+(ab′+ba′)i
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598 Complex Numbers

With these definitions of equality, addition, and multiplication, the complex numbers satisfy all the basic

arithmetical axioms adhered to by the real numbers (the verifications are omitted). One consequence of
this is that they can be manipulated in the obvious fashion, except that i2 is replaced by −1 wherever it
occurs, and the rule for equality must be observed.

Example A.1

If z = 2−3i and w =−1+ i, write each of the following in the form a+bi: z+w, z−w, zw, 1
3z,

and z2.

Solution.

z+w = (2−3i)+(−1+ i) = (2−1)+(−3+1)i = 1−2i

z−w = (2−3i)− (−1+ i) = (2+1)+(−3−1)i = 3−4i

zw = (2−3i)(−1+ i) = (−2−3i2)+(2+3)i = 1+5i

1
3z = 1

3(2−3i) = 2
3 − i

z2 = (2−3i)(2−3i) = (4+9i2)+(−6−6)i =−5−12i

Example A.2

Find all complex numbers z such as that z2 = i.

Solution. Write z = a+bi; we must determine a and b. Now z2 = (a2−b2)+(2ab)i, so the
condition z2 = i becomes

(a2−b2)+(2ab)i = 0+ i

Equating real and imaginary parts, we find that a2 = b2 and 2ab = 1. The solution is a = b =± 1√
2
,

so the complex numbers required are z = 1√
2
+ 1√

2
i and z =− 1√

2
− 1√

2
i.

As for real numbers, it is possible to divide by every nonzero complex number z. That is, there exists
a complex number w such that wz = 1. As in the real case, this number w is called the inverse of z and
is denoted by z−1 or 1

z . Moreover, if z = a+ bi, the fact that z $= 0 means that a $= 0 or b $= 0. Hence
a2 +b2 $= 0, and an explicit formula for the inverse is

1
z =

a
a2+b2 − b

a2+b2 i

In actual calculations, the work is facilitated by two useful notions: the conjugate and the absolute value
of a complex number. The next example illustrates the technique.
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Example A.3

Write 3+2i
2+5i in the form a+bi.

Solution. Multiply top and bottom by the complex number 2−5i (obtained from the denominator
by negating the imaginary part). The result is

3+2i
2+5i =

(2−5i)(3+2i)
(2−5i)(2+5i) =

(6+10)+(4−15)i
22−(5i)2 = 16

29 −
11
29 i

Hence the simplified form is 16
29 −

11
29 i, as required.

The key to this technique is that the product (2−5i)(2+5i) = 29 in the denominator turned out to be
a real number. The situation in general leads to the following notation: If z = a+bi is a complex number,
the conjugate of z is the complex number, denoted z, given by

z = a−bi where z = a+bi

Hence z is obtained from z by negating the imaginary part. Thus (2+3i) = 2−3i and (1− i) = 1+ i. If
we multiply z = a+bi by z, we obtain

zz = a2 +b2 where z = a+bi

The real number a2+b2 is always nonnegative, so we can state the following definition: The absolute

value or modulus of a complex number z = a+ bi, denoted by |z|, is the positive square root
√

a2 +b2;
that is,

|z|=
√

a2 +b2 where z = a+bi

For example, |2−3i|=
√

22 +(−3)2 =
√

13 and |1+ i|=
√

12 +12 =
√

2.

Note that if a real number a is viewed as the complex number a+0i, its absolute value (as a complex
number) is |a|=

√
a2, which agrees with its absolute value as a real number.

With these notions in hand, we can describe the technique applied in Example A.3 as follows: When
converting a quotient z

w of complex numbers to the form a+bi, multiply top and bottom by the conjugate
w of the denominator.

The following list contains the most important properties of conjugates and absolute values. Through-
out, z and w denote complex numbers.

C1. z±w = z±w C7. 1
z =

1
|z|2 z

C2. zw = z w C8. |z|≥ 0 for all complex numbers z

C3.
(

z
w

)
= z

w C9. |z|= 0 if and only if z = 0

C4. (z) = z C10. |zw|= |z||w|

C5. z is real if and only if z = z C11. | z
w |=

|z|
|w|

C6. zz = |z|2 C12. |z+w|≤ |z|+ |w| (triangle inequality)

All these properties (except property C12) can (and should) be verified by the reader for arbitrary complex
numbers z = a+ bi and w = c+ di. They are not independent; for example, property C10 follows from
properties C2 and C6.
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The triangle inequality, as its name suggests, comes from a geometric representation of the complex
numbers analogous to identification of the real numbers with the points of a line. The representation is
achieved as follows:

1

i

(a, −b) = a− bi

0

(0, b) = bi
(a, b) = a+ bi

(a, 0) = a
x

y

Figure A.1

Introduce a rectangular coordinate system in the plane (Figure A.1),
and identify the complex number a+bi with the point (a, b). When this
is done, the plane is called the complex plane. Note that the point (a, 0)
on the x axis now represents the real number a = a+0i, and for this rea-
son, the x axis is called the real axis. Similarly, the y axis is called the
imaginary axis. The identification (a, b) = a+bi of the geometric point
(a, b) and the complex number a+bi will be used in what follows without
comment. For example, the origin will be referred to as 0.

This representation of the complex numbers in the complex plane gives
a useful way of describing the absolute value and conjugate of a complex
number z = a+bi. The absolute value |z| =

√
a2 +b2 is just the distance

from z to the origin. This makes properties C8 and C9 quite obvious. The
conjugate z = a−bi of z is just the reflection of z in the real axis (x axis),

a fact that makes properties C4 and C5 clear.

Given two complex numbers z1 = a1 +b1i = (a1, b1) and z2 = a2 +b2i = (a2, b2), the absolute value
of their difference

|z1− z2|=
√

(a1−a2)2 +(b1−b2)2

is just the distance between them. This gives the complex distance formula:

0

|w|
w

|(z+w)−w|= |z|z+w

|z+w|

x

y

Figure A.2

|z1− z2| is the distance between z1 and z2

This useful fact yields a simple verification of the triangle inequality,
property C12. Suppose z and w are given complex numbers. Consider the
triangle in Figure A.2 whose vertices are 0, w, and z+w. The three sides
have lengths |z|, |w|, and |z+w| by the complex distance formula, so the
inequality

|z+w|≤ |z|+ |w|
expresses the obvious geometric fact that the sum of the lengths of two
sides of a triangle is at least as great as the length of the third side.

The representation of complex numbers as points in the complex plane
has another very useful property: It enables us to give a geometric de-
scription of the sum and product of two complex numbers. To obtain the
description for the sum, let

z = a+bi = (a, b)

w = c+di = (c, d)

0 = (0, 0)

w = (c, d)

z+w = (a+ c, b+ d)

z = (a, b)

x

y

Figure A.3

denote two complex numbers. We claim that the four points 0, z, w, and
z+w form the vertices of a parallelogram. In fact, in Figure A.3 the lines
from 0 to z and from w to z+w have slopes

b−0
a−0 = b

a and (b+d)−d
(a+c)−c

= b
a



601

respectively, so these lines are parallel. (If it happens that a = 0, then both these lines are vertical.)
Similarly, the lines from z to z+w and from 0 to w are also parallel, so the figure with vertices 0, z, w, and
z+w is indeed a parallelogram. Hence, the complex number z+w can be obtained geometrically from
z and w by completing the parallelogram. This is sometimes called the parallelogram law of complex
addition. Readers who have studied mechanics will recall that velocities and accelerations add in the same
way; in fact, these are all special cases of vector addition.

Polar Form

θ

0 1

i

−1

−i

0

Radian
measure

of θ

Unit
circle

1
P

x

y

Figure A.4

The geometric description of what happens when two complex numbers
are multiplied is at least as elegant as the parallelogram law of addition, but
it requires that the complex numbers be represented in polar form. Before
discussing this, we pause to recall the general definition of the trigono-
metric functions sine and cosine. An angle θ in the complex plane is in
standard position if it is measured counterclockwise from the positive
real axis as indicated in Figure A.4. Rather than using degrees to measure
angles, it is more natural to use radian measure. This is defined as follows:
The circle with its centre at the origin and radius 1 (called the unit circle)
is drawn in Figure A.4. It has circumference 2π , and the radian measure

of θ is the length of the arc on the unit circle counterclockwise from 1 to
the point P on the unit circle determined by θ . Hence 90◦ = π

2 , 45◦ = π
4 ,

180◦ = π , and a full circle has the angle 360◦ = 2π . Angles measured clockwise from 1 are negative; for
example, −i corresponds to −π

2 (or to 3π
2 ).

Consider an angle θ in the range 0 ≤ θ ≤ π
2 . If θ is plotted in standard position as in Figure A.4,

it determines a unique point P on the unit circle, and P has coordinates (cosθ , sinθ ) by elementary
trigonometry. However, any angle θ (acute or not) determines a unique point on the unit circle, so we
define the cosine and sine of θ (written cosθ and sinθ ) to be the x and y coordinates of this point. For
example, the points

1 = (1, 0) i = (0, 1) −1 = (−1, 0) −i = (0, −1)

plotted in Figure A.4 are determined by the angles 0, π
2 , π , 3π

2 , respectively. Hence

cos0 = 1 cos π
2 = 0 cosπ =−1 cos 3π

2 = 0

sin0 = 0 sin π
2 = 1 sinπ = 0 sin 3π

2 =−1

Now we can describe the polar form of a complex number. Let z = a+bi be a complex number, and
write the absolute value of z as

r = |z|=
√

a2 +b2

θ

0 a

br

z = (a, b)

x

y

Figure A.5

If z $= 0, the angle θ shown in Figure A.5 is called an argument of z and
is denoted

θ = arg z

This angle is not unique (θ +2πk would do as well for any
k = 0, ±1, ±2, . . . ). However, there is only one argument θ in the range
−π < θ ≤ π , and this is sometimes called the principal argument of z.
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Returning to Figure A.5, we find that the real and imaginary parts a and b of z are related to r and θ by

a = r cosθ

b = r sinθ

Hence the complex number z = a+bi has the form

z = r(cosθ + isinθ) r = |z|, θ = arg (z)

The combination cosθ + isinθ is so important that a special notation is used:

eiθ = cosθ + isinθ

is called Euler’s formula after the great Swiss mathematician Leonhard Euler (1707–1783). With this
notation, z is written

z = reiθ r = |z|, θ = arg (z)

This is a polar form of the complex number z. Of course it is not unique, because the argument can be
changed by adding a multiple of 2π .

Example A.4

Write z1 =−2+2i and z2 =−i in polar form.

Solution.

θ1

θ2
0

z1 =−2+ 2i

z2 =−i

x

y

Figure A.6

The two numbers are plotted in the complex plane in Figure A.6.
The absolute values are

r1 = |−2+2i|=
√

(−2)2 +22 = 2
√

2

r2 = |− i|=
√

02 +(−1)2 = 1

By inspection of Figure A.6, arguments of z1 and z2 are

θ1 = arg (−2+2i) = 3π
4

θ2 = arg (−i) = 3π
2

The corresponding polar forms are z1 =−2+2i = 2
√

2e3πi/4 and z2 =−i = e3πi/2. Of course, we
could have taken the argument −π

2 for z2 and obtained the polar form z2 = e−πi/2.

In Euler’s formula eiθ = cosθ + isinθ , the number e is the familiar constant e = 2.71828 . . . from
calculus. The reason for using e will not be given here; the reason why cosθ + isinθ is written as an
exponential function of θ is that the law of exponents holds:

eiθ · eiφ = ei(θ+φ)

where θ and φ are any two angles. In fact, this is an immediate consequence of the addition identities for
sin(θ +φ) and cos(θ +φ):
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eiθ eiφ = (cosθ + isinθ)(cosφ + isinφ)

= (cosθ cosφ − sinθ sinφ)+ i(cosθ sinφ + sinθ cosφ)

= cos(θ +φ)+ isin(θ +φ)

= ei(θ+φ)

This is analogous to the rule eaeb = ea+b, which holds for real numbers a and b, so it is not unnatural to
use the exponential notation eiθ for the expression cosθ + isinθ . In fact, a whole theory exists wherein
functions such as ez, sinz, and cosz are studied, where z is a complex variable. Many deep and beautiful
theorems can be proved in this theory, one of which is the so-called fundamental theorem of algebra
mentioned later (Theorem A.4). We shall not pursue this here.

The geometric description of the multiplication of two complex numbers follows from the law of
exponents.

Theorem A.1: Multiplication Rule

If z1 = r1eiθ1 and z2 = r2eiθ2 are complex numbers in polar form, then

z1z2 = r1r2ei(θ1+θ2)

In other words, to multiply two complex numbers, simply multiply the absolute values and add the ar-
guments. This simplifies calculations considerably, particularly when we observe that it is valid for any

arguments θ1 and θ2.

Example A.5

Multiply (1− i)(1+
√

3i) in two ways.

Solution.

π
3

− π
4

π
12

0

1+
√

3i

1− i

(1− i)(1+
√

3i)

x

y

Figure A.7

We have |1− i|=
√

2 and |1+
√

3i|= 2 so, from Figure A.7,

1− i =
√

2e−iπ/4

1+
√

3i = 2eiπ/3

Hence, by the multiplication rule,

(1− i)(1+
√

3i) = (
√

2e−iπ/4)(2eiπ/3)

= 2
√

2ei(−π/4+π/3)

= 2
√

2eiπ/12

This gives the required product in polar form. Of course, direct multiplication gives
(1− i)(1+

√
3i) = (

√
3+1)+ (

√
3−1)i. Hence, equating real and imaginary parts gives the

formulas cos( π
12) =

√
3+1

2
√

2
and sin( π

12) =
√

3−1
2
√

2
.
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Roots of Unity

If a complex number z = reiθ is given in polar form, the powers assume a particularly simple form. In
fact, z2 = (reiθ)(reiθ ) = r2e2iθ , z3 = z2 · z = (r2e2iθ )(reiθ) = r3e3iθ , and so on. Continuing in this way,
it follows by induction that the following theorem holds for any positive integer n. The name honours
Abraham De Moivre (1667–1754).

Theorem A.2: De Moivre’s Theorem

If θ is any angle, then (eiθ )n = einθ holds for all integers n.

Proof. The case n > 0 has been discussed, and the reader can verify the result for n = 0. To derive it for
n < 0, first observe that

if z = reiθ $= 0 then z−1 = 1
r e−iθ

In fact, (reiθ )(1
r e−iθ ) = 1ei0 = 1 by the multiplication rule. Now assume that n is negative and write it as

n =−m, m > 0. Then

(reiθ)n = [(reiθ )−1]m = (1
r e−iθ )m = r−mei(−mθ ) = rneinθ

If r = 1, this is De Moivre’s theorem for negative n.

Example A.6

2π
3

0

−1+
√

3i

2

x

y

Figure A.8

Verify that (−1+
√

3i)3 = 8.

Solution. We have |−1+
√

3i| = 2, so −1+
√

3i = 2e2πi/3

(see Figure A.8). Hence De Moivre’s theorem gives

(−1+
√

3i)3 = (2e2πi/3)3 = 8e3(2πi/3) = 8e2πi = 8

De Moivre’s theorem can be used to find nth roots of complex numbers where n is positive. The next
example illustrates this technique.

Example A.7

Find the cube roots of unity; that is, find all complex numbers z such that z3 = 1.

Solution. First write z = reiθ and 1 = 1ei0 in polar form. We must use the condition z3 = 1 to
determine r and θ . Because z3 = r3e3iθ by De Moivre’s theorem, this requirement becomes

r3e3iθ = 1e0i
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These two complex numbers are equal, so their absolute values must be equal and the arguments
must either be equal or differ by an integral multiple of 2π:

r3 = 1
3θ = 0+2kπ , k some integer

Because r is real and positive, the condition r3 = 1 implies that r = 1. However,

θ = 2kπ
3 , k some integer

2π
3

4π
3 0 1

− 1
2 +

√
3

2 i

− 1
2 −

√
3

2 i

x

y

Figure A.9

seems at first glance to yield infinitely many different angles for
z. However, choosing k = 0, 1, 2 gives three possible arguments
θ (where 0≤ θ < 2π), and the corresponding roots are

1e0i = 1

1e2πi/3 =−1
2 +

√
3

2 i

1e4πi/3 =−1
2 −

√
3

2 i

These are displayed in Figure A.9. All other values of k yield
values of θ that differ from one of these by a multiple of 2π—and

so do not give new roots. Hence we have found all the roots.

The same type of calculation gives all complex nth roots of unity; that is, all complex numbers z such
that zn = 1. As before, write 1 = 1e0i and

z = reiθ

in polar form. Then zn = 1 takes the form

rneniθ = 1e0i

using De Moivre’s theorem. Comparing absolute values and arguments yields

rn = 1
nθ = 0+2kπ , k some integer

Hence r = 1, and the n values
θ = 2kπ

n , k = 0, 1, 2, . . . , n−1

of θ all lie in the range 0≤ θ < 2π . As in Example A.7, every choice of k yields a value of θ that differs
from one of these by a multiple of 2π , so these give the arguments of all the possible roots.

Theorem A.3: nth Roots of Unity

If n≥ 1 is an integer, the nth roots of unity (that is, the solutions to zn = 1) are given by

z = e2πki/n, k = 0, 1, 2, . . . , n−1
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0

1 = e0i

e2π i/5

e4π i/5

e6π i/5

e8π i/5

x

y

Figure A.10

The nth roots of unity can be found geometrically as the points on the unit
circle that cut the circle into n equal sectors, starting at 1. The case n = 5
is shown in Figure A.10, where the five fifth roots of unity are plotted.

The method just used to find the nth roots of unity works equally well
to find the nth roots of any complex number in polar form. We give one
example.

Example A.8

Find the fourth roots of
√

2+
√

2i.

Solution. First write
√

2+
√

2i = 2eπi/4 in polar form. If z = reiθ satisfies z4 =
√

2+
√

2i, then De
Moivre’s theorem gives

r4ei(4θ ) = 2eπi/4

Hence r4 = 2 and 4θ = π
4 +2kπ , k an integer. We obtain four distinct roots (and hence all) by

r =
4
√

2, θ = π
16 = 2kπ

16 , k = 0, 1, 2, 3

Thus the four roots are

4
√

2eπi/16 4
√

2e9πi/16 4
√

2e17πi/16 4
√

2e25πi/16

Of course, reducing these roots to the form a+bi would require the computation of 4
√

2 and the
sine and cosine of the various angles.

An expression of the form ax2 + bx+ c, where the coefficients a $= 0, b, and c are real numbers, is
called a real quadratic. A complex number u is called a root of the quadratic if au2 +bu+ c = 0. The
roots are given by the famous quadratic formula:

u = −b±
√

b2−4ac
2a

The quantity d = b2− 4ac is called the discriminant of the quadratic ax2 + bx+ c, and there is no real
root if and only if d < 0. In this case the quadratic is said to be irreducible. Moreover, the fact that d < 0
means that

√
d = i

√
|d|, so the two (complex) roots are conjugates of each other:

u = 1
2a(−b+ i

√
|d|) and u = 1

2a(−b− i
√
|d|)

The converse of this is true too: Given any nonreal complex number u, then u and u are the roots of some
real irreducible quadratic. Indeed, the quadratic

x2− (u+u)x+uu = (x−u)(x−u)

has real coefficients (uu = |u|2 and u+u is twice the real part of u) and so is irreducible because its roots
u and u are not real.
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Example A.9

Find a real irreducible quadratic with u = 3−4i as a root.

Solution. We have u+u = 6 and |u|2 = 25, so x2−6x+25 is irreducible with u and u = 3+4i as
roots.

Fundamental Theorem of Algebra

As we mentioned earlier, the complex numbers are the culmination of a long search by mathematicians
to find a set of numbers large enough to contain a root of every polynomial. The fact that the complex
numbers have this property was first proved by Gauss in 1797 when he was 20 years old. The proof is
omitted.

Theorem A.4: Fundamental Theorem of Algebra

Every polynomial of positive degree with complex coefficients has a complex root.

If f (x) is a polynomial with complex coefficients, and if u1 is a root, then the factor theorem (Section 6.5)
asserts that

f (x) = (x−u1)g(x)

where g(x) is a polynomial with complex coefficients and with degree one less than the degree of f (x).
Suppose that u2 is a root of g(x), again by the fundamental theorem. Then g(x) = (x−u2)h(x), so

f (x) = (x−u1)(x−u2)h(x)

This process continues until the last polynomial to appear is linear. Thus f (x) has been expressed as a
product of linear factors. The last of these factors can be written in the form u(x−un), where u and un are
complex (verify this), so the fundamental theorem takes the following form.

Theorem A.5

Every complex polynomial f (x) of degree n≥ 1 has the form

f (x) = u(x−u1)(x−u2) · · ·(x−un)

where u, u1, . . . , un are complex numbers and u $= 0. The numbers u1, u2, . . . , un are the roots of
f (x) (and need not all be distinct), and u is the coefficient of xn.

This form of the fundamental theorem, when applied to a polynomial f (x) with real coefficients, can be
used to deduce the following result.



608 Complex Numbers

Theorem A.6

Every polynomial f (x) of positive degree with real coefficients can be factored as a product of
linear and irreducible quadratic factors.

In fact, suppose f (x) has the form

f (x) = anxn +an−1xn−1 + · · ·+a1x+a0

where the coefficients ai are real. If u is a complex root of f (x), then we claim first that u is also a root. In
fact, we have f (u) = 0, so

0 = 0 = f (u) = anun +an−1un−1 + · · ·+a1u+a0

= anun +an−1un−1 + · · ·+a1u+a0

= anun +an−1un−1 + · · ·+a1u+a0

= anun +an−1un−1 + · · ·+a1u+a0

= f (u)

where ai = ai for each i because the coefficients ai are real. Thus if u is a root of f (x), so is its conjugate
u. Of course some of the roots of f (x) may be real (and so equal their conjugates), but the nonreal roots
come in pairs, u and u. By Theorem A.6, we can thus write f (x) as a product:

f (x) = an(x− r1) · · ·(x− rk)(x−u1)(x−u1) · · ·(x−um)(x−um) (A.1)

where an is the coefficient of xn in f (x); r1, r2, . . . , rk are the real roots; and u1, u1, u2, u2, . . . , um, um

are the nonreal roots. But the product

(x−u j)(x−uj) = x2− (u j +u j)x+(u ju j)

is a real irreducible quadratic for each j (see the discussion preceding Example A.9). Hence (A.1) shows
that f (x) is a product of linear and irreducible quadratic factors, each with real coefficients. This is the
conclusion in Theorem A.6.

Exercises for A

Exercise A.1 Solve each of the following for the real
number x.

x−4i = (2− i)2a. (2+ xi)(3−2i)
= 12+5i

b.

(2+ xi)2 = 4c. (2+ xi)(2− xi) = 5d.

Exercise A.2 Convert each of the following to the form
a+bi.

(2−3i)−2(2−3i)+9a.

(3−2i)(1+ i)+ |3+4i|b.
1+i
2−3i +

1−i
−2+3ic. 3−2i

1−i +
3−7i
2−3id.

i131e. (2− i)3f.
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(1+ i)4g. (1− i)2(2+ i)2h.

3
√

3−i√
3+i

+
√

3+7i√
3−i

i.

Exercise A.3 In each case, find the complex number z.

iz− (1+ i)2 = 3− ia. (i + z) − 3i(2 − z) =
iz+1

b.

z2 =−ic. z2 = 3−4id.

z(1+ i) = z+(3+2i)e. z(2− i) = (z+ 1)(1+
i)

f.

Exercise A.4 In each case, find the roots of the real
quadratic equation.

x2−2x+3 = 0a. x2− x+1 = 0b.

3x2−4x+2 = 0c. 2x2−5x+2 = 0d.

Exercise A.5 Find all numbers x in each case.

x3 = 8a. x3 =−8b.

x4 = 16c. x4 = 64d.

Exercise A.6 In each case, find a real quadratic with u

as a root, and find the other root.

u = 1+ ia. u = 2−3ib.

u =−ic. u = 3−4id.

Exercise A.7 Find the roots of x2−2cos θx+1 = 0, θ
any angle.

Exercise A.8 Find a real polynomial of degree 4 with
2− i and 3−2i as roots.

Exercise A.9 Let re z and im z denote, respectively, the
real and imaginary parts of z. Show that:

im (iz) = re za. re (iz) =− im zb.

z+ z = 2 re zc. z− z = 2i im zd.

re (z+w) = re z+ re w, and re (tz) = t · re z if t is
real

e.

im (z+w) = im z+ im w, and im (tz) = t · im z if
t is real

f.

Exercise A.10 In each case, show that u is a root of the
quadratic equation, and find the other root.

x2−3ix+(−3+ i) = 0; u = 1+ ia.

x2 + ix− (4−2i) = 0; u =−2b.

x2− (3−2i)x+(5− i) = 0; u = 2−3ic.

x2 +3(1− i)x−5i = 0; u =−2+ id.

Exercise A.11 Find the roots of each of the following
complex quadratic equations.

x2 +2x+(1+ i) = 0a. x2− x+(1− i) = 0b.

x2− (2− i)x+(3− i) = 0c.

x2−3(1− i)x−5i = 0d.

Exercise A.12 In each case, describe the graph of the
equation (where z denotes a complex number).

|z|= 1a. |z−1|= 2b.

z = izc. z =−zd.

z = |z|e. im z = m · re z, m a
real number

f.

Exercise A.13

a. Verify |zw| = |z||w| directly for z = a + bi and
w = c+di.

b. Deduce (a) from properties C2 and C6.

Exercise A.14 Prove that |z+w|= |z|2 + |w|2+wz+wz

for all complex numbers w and z.

Exercise A.15 If zw is real and z $= 0, show that w = az

for some real number a.

Exercise A.16 If zw = zv and z $= 0, show that w = uv

for some u in C with |u|= 1.

Exercise A.17 Show that (1+ i)n +(1− i)n is real for
all n, using property C5.

Exercise A.18 Express each of the following in polar
form (use the principal argument).

3−3ia. −4ib.

−
√

3+ ic. −4+4
√

3id.

−7ie. −6+6if.
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Exercise A.19 Express each of the following in the form
a+bi.

3eπia. e7πi/3b.

2e3πi/4c.
√

2e−πi/4d.

e5πi/4e. 2
√

3e−2πi/6f.

Exercise A.20 Express each of the following in the form
a+bi.

(−1+
√

3i)2a. (1+
√

3i)−4b.

(1+ i)8c. (1− i)10d.

(1− i)6(
√

3+ i)3e. (
√

3− i)9(2−2i)5f.

Exercise A.21 Use De Moivre’s theorem to show that:

a. cos2θ = cos2 θ − sin2 θ ; sin2θ = 2cos θ sin θ

b. cos3θ = cos3 θ −3cosθ sin2 θ ;
sin3θ = 3cos2 θ sin θ − sin3 θ

Exercise A.22

a. Find the fourth roots of unity.

b. Find the sixth roots of unity.

Exercise A.23 Find all complex numbers z such that:

z4 =−1a. z4 = 2(
√

3i−1)b.

z3 =−27ic. z6 =−64d.

Exercise A.24 If z = reiθ in polar form, show that:

z = re−iθa. z−1 = 1
r e−iθ if z $= 0b.

Exercise A.25 Show that the sum of the nth roots of
unity is zero.
[Hint: 1− zn = (1− z)(1+ z+ z2 + · · ·+ zn−1) for any
complex number z.]

Exercise A.26

a. Let z1, z2, z3, z4, and z5 be equally spaced around
the unit circle. Show that z1+z2+z3+z4+z5 = 0.
[Hint: (1−z)(1+z+z2 +z3+z4) = 1−z5 for any
complex number z.]

b. Repeat (a) for any n ≥ 2 points equally spaced
around the unit circle.

c. If |w|= 1, show that the sum of the roots of zn = w

is zero.

Exercise A.27 If zn is real, n≥ 1, show that (z)n is real.

Exercise A.28 If z2 = z2, show that z is real or pure
imaginary.

Exercise A.29 If a and b are rational numbers, let p and
q denote numbers of the form a+b

√
2. If p = a+b

√
2,

define p̃ = a− b
√

2 and [p] = a2− 2b2. Show that each
of the following holds.

a+b
√

2 = a1 +b1
√

2 only if a = a1 and b = b1a.

p̃±q = p̃± q̃b. p̃q = p̃q̃c.

[p] = pp̃d. [pq] = [p][q]e.

If f (x) is a polynomial with rational coefficients
and p = a+b

√
2 is a root of f (x), then p̃ is also a

root of f (x).

f.



B. Proofs

Logic plays a basic role in human affairs. Scientists use logic to draw conclusions from experiments,
judges use it to deduce consequences of the law, and mathematicians use it to prove theorems. Logic
arises in ordinary speech with assertions such as “If John studies hard, he will pass the course,” or “If an
integer n is divisible by 6, then n is divisible by 3.”1 In each case, the aim is to assert that if a certain
statement is true, then another statement must also be true. In fact, if p and q denote statements, most
theorems take the form of an implication: “If p is true, then q is true.” We write this in symbols as

p⇒ q

and read it as “p implies q.” Here p is the hypothesis and q the conclusion of the implication. The
verification that p⇒ q is valid is called the proof of the implication. In this section we examine the most
common methods of proof2 and illustrate each technique with some examples.

Method of Direct Proof

To prove that p⇒ q, demonstrate directly that q is true whenever p is true.

Example B.1

If n is an odd integer, show that n2 is odd.

Solution. If n is odd, it has the form n = 2k+1 for some integer k. Then
n2 = 4k2 +4k+1 = 2(2k2+2k)+1 also is odd because 2k2 +2k is an integer.

Note that the computation n2 = 4k2+4k+1 in Example B.1 involves some simple properties of arith-
metic that we did not prove. These properties, in turn, can be proved from certain more basic properties
of numbers (called axioms)—more about that later. Actually, a whole body of mathematical information
lies behind nearly every proof of any complexity, although this fact usually is not stated explicitly. Here is
a geometrical example.

1By an integer we mean a “whole number”; that is, a number in the set 0, ±1, ±2, ±3, . . .
2For a more detailed look at proof techniques see D. Solow, How to Read and Do Proofs, 2nd ed. (New York: Wiley, 1990);

or J. F. Lucas. Introduction to Abstract Mathematics, Chapter 2 (Belmont, CA: Wadsworth, 1986).
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Example B.2

In a right triangle, show that the sum of the two acute angles is 90 degrees.

Solution.

β

α

β

α
β

α

The right triangle is shown in the diagram. Construct a rectangle
with sides of the same length as the short sides of the original
triangle, and draw a diagonal as shown. The original triangle
appears on the bottom of the rectangle, and the top triangle is
identical to the original (but rotated). Now it is clear that α +β
is a right angle.

Geometry was one of the first subjects in which formal proofs were used—Euclid’s Elements was
published about 300 B.C. The Elements is the most successful textbook ever written, and contains many
of the basic geometrical theorems that are taught in school today. In particular, Euclid included a proof of
an earlier theorem (about 500 B.C.) due to Pythagoras. Recall that, in a right triangle, the side opposite
the right angle is called the hypotenuse of the triangle.

Example B.3: Pythagoras’ Theorem

a

b

β

α

c

a

a

a2

b

b

b2

c2

b a

b

a

ba

a

b

α β

α

β

αβ

α

β

In a right-angled triangle, show that the square of the length
of the hypotenuse equals the sum of the squares of the lengths
of the other two sides.

Solution. Let the sides of the right triangle have lengths a, b, and
c as shown. Consider two squares with sides of length a+b, and
place four copies of the triangle in these squares as in the diagram.
The central rectangle in the second square shown is itself a square
because the angles α and β add to 90 degrees (using Example B.2),
so its area is c2 as shown. Comparing areas shows that both
a2 +b2 and c2 each equal the area of the large square minus
four times the area of the original triangle, and hence are equal.

Sometimes it is convenient (or even necessary) to break a proof into parts, and deal with each case
separately. We formulate the general method as follows:
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Method of Reduction to Cases

To prove that p⇒ q, show that p implies at least one of a list p1, p2, . . . , pn of statements (the cases) and
then show that pi⇒ q for each i.

Example B.4

Show that n2 ≥ 0 for every integer n.

Solution. This statement can be expressed as an implication: If n is an integer, then n2 ≥ 0. To
prove it, consider the following three cases:

(1) n > 0; (2) n = 0; (3) n < 0.

Then n2 > 0 in Cases (1) and (3) because the product of two positive (or two negative) integers is
positive. In Case (2) n2 = 02 = 0, so n2 ≥ 0 in every case.

Example B.5

If n is an integer, show that n2−n is even.

Solution. We consider two cases:

(1) n is even; (2) n is odd.

We have n2−n = n(n−1), so this is even in Case (1) because any multiple of an even number is
again even. Similarly, n−1 is even in Case (2) so n(n−1) is again even for the same reason.
Hence n2−n is even in any case.

The statements used in mathematics are required to be either true or false. This leads to a proof
technique which causes consternation in many beginning students. The method is a formal version of a
debating strategy whereby the debater assumes the truth of an opponent’s position and shows that it leads
to an absurd conclusion.

Method of Proof by Contradiction

To prove that p⇒ q, show that the assumption that both p is true and q is false leads to a contradiction. In
other words, if p is true, then q must be true; that is, p⇒ q.

Example B.6

If r is a rational number (fraction), show that r2 $= 2.

Solution. To argue by contradiction, we assume that r is a rational number and that r2 = 2, and
show that this assumption leads to a contradiction. Let m and n be integers such that r = m

n is in
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lowest terms (so, in particular, m and n are not both even). Then r2 = 2 gives m2 = 2n2, so m2 is
even. This means m is even (Example B.1), say m = 2k. But then 2n2 = m2 = 4k2, so n2 = 2k2 is
even, and hence n is even. This shows that n and m are both even, contrary to the choice of these
numbers.

Example B.7: Pigeonhole Principle

If n+1 pigeons are placed in n holes, then some hole contains at least 2 pigeons.

Solution. Assume the conclusion is false. Then each hole contains at most one pigeon and so,
since there are n holes, there must be at most n pigeons, contrary to assumption.

The next example involves the notion of a prime number, that is an integer that is greater than 1 which
cannot be factored as the product of two smaller positive integers both greater than 1. The first few primes
are 2, 3, 5, 7, 11, . . . .

Example B.8

If 2n−1 is a prime number, show that n is a prime number.

Solution. We must show that p⇒ q where p is the statement “2n−1 is a prime”, and q is the
statement “n is a prime.” Suppose that p is true but q is false so that n is not a prime, say n = ab

where a≥ 2 and b≥ 2 are integers. If we write 2a = x, then 2n = 2ab = (2a)b = xb. Hence 2n−1
factors:

2n−1 = xb−1 = (x−1)(xb−1 + xb−2 + · · ·+ x2 + x+1)

As x≥ 4, this expression is a factorization of 2n−1 into smaller positive integers, contradicting the
assumption that 2n−1 is prime.

The next example exhibits one way to show that an implication is not valid.

Example B.9

Show that the implication “n is a prime⇒ 2n−1 is a prime” is false.

Solution. The first four primes are 2, 3, 5, and 7, and the corresponding values for 2n−1 are 3, 7,
31, 127 (when n = 2, 3, 5, 7). These are all prime as the reader can verify. This result seems to be
evidence that the implication is true. However, the next prime is 11 and 211−1 = 2047 = 23 ·89,
which is clearly not a prime.

We say that n = 11 is a counterexample to the (proposed) implication in Example B.9. Note that, if you
can find even one example for which an implication is not valid, the implication is false. Thus disproving
implications is in a sense easier than proving them.

The implications in Example B.8 and Example B.9 are closely related: They have the form p⇒ q and
q⇒ p, where p and q are statements. Each is called the converse of the other and, as these examples
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show, an implication can be valid even though its converse is not valid. If both p⇒ q and q⇒ p are valid,
the statements p and q are called logically equivalent. This is written in symbols as

p⇔ q

and is read “p if and only if q”. Many of the most satisfying theorems make the assertion that two
statements, ostensibly quite different, are in fact logically equivalent.

Example B.10

If n is an integer, show that “n is odd⇔ n2 is odd.”

Solution. In Example B.1 we proved the implication “n is odd⇒ n2 is odd.” Here we prove the
converse by contradiction. If n2 is odd, we assume that n is not odd. Then n is even, say n = 2k, so
n2 = 4k2, which is also even, a contradiction.

Many more examples of proofs can be found in this book and, although they are often more complex,
most are based on one of these methods. In fact, linear algebra is one of the best topics on which the
reader can sharpen his or her skill at constructing proofs. Part of the reason for this is that much of linear
algebra is developed using the axiomatic method. That is, in the course of studying various examples
it is observed that they all have certain properties in common. Then a general, abstract system is studied
in which these basic properties are assumed to hold (and are called axioms). In this system, statements
(called theorems) are deduced from the axioms using the methods presented in this appendix. These
theorems will then be true in all the concrete examples, because the axioms hold in each case. But this
procedure is more than just an efficient method for finding theorems in the examples. By reducing the
proof to its essentials, we gain a better understanding of why the theorem is true and how it relates to
analogous theorems in other abstract systems.

The axiomatic method is not new. Euclid first used it in about 300 B.C. to derive all the propositions of
(euclidean) geometry from a list of 10 axioms. The method lends itself well to linear algebra. The axioms
are simple and easy to understand, and there are only a few of them. For example, the theory of vector
spaces contains a large number of theorems derived from only ten simple axioms.

Exercises for B

Exercise B.1 In each case prove the result and either
prove the converse or give a counterexample.

a. If n is an even integer, then n2 is a multiple of 4.

b. If m is an even integer and n is an odd integer, then
m+n is odd.

c. If x = 2 or x = 3, then x3−6x2 +11x−6 = 0.

d. If x2−5x+6 = 0, then x = 2 or x = 3.

Exercise B.2 In each case either prove the result by
splitting into cases, or give a counterexample.

a. If n is any integer, then n2 = 4k+1 for some inte-
ger k.

b. If n is any odd integer, then n2 = 8k+ 1 for some
integer k.

c. If n is any integer, n3−n = 3k for some integer k.
[Hint: Use the fact that each integer has one of the
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forms 3k, 3k+1, or 3k+2, where k is an integer.]

Exercise B.3 In each case prove the result by contradic-
tion and either prove the converse or give a counterexam-
ple.

a. If n > 2 is a prime integer, then n is odd.

b. If n+m = 25 where n and m are integers, then one
of n and m is greater than 12.

c. If a and b are positive numbers and a ≤ b, then√
a≤
√

b.

d. If m and n are integers and mn is even, then m is
even or n is even.

Exercise B.4 Prove each implication by contradiction.

a. If x and y are positive numbers, then√
x+ y $=

√
x+
√

y.

b. If x is irrational and y is rational, then x+ y is irra-
tional.

c. If 13 people are selected, at least 2 have birthdays
in the same month.

Exercise B.5 Disprove each statement by giving a coun-
terexample.

a. n2 +n+11 is a prime for all positive integers n.

b. n3 ≥ 2n for all integers n≥ 2.

c. If n ≥ 2 points are arranged on a circle in such a
way that no three of the lines joining them have
a common point, then these lines divide the circle
into 2n−1 regions. [The cases n = 2, 3, and 4 are
shown in the diagram.]

n = 2 n = 3 n = 4

Exercise B.6 The number e from calculus has a series
expansion

e = 1+ 1
1! +

1
2! +

1
3! + · · ·

where n! = n(n− 1) · · ·3 · 2 · 1 for each integer n ≥ 1.
Prove that e is irrational by contradiction. [Hint: If
e = m/n, consider

k = n!
(
e−1− 1

1! −
1
2! −

1
3! − · · ·− 1

n!

)
.

Show that k is a positive integer and that

k = 1
n+1 +

1
(n+1)(n+2) + · · ·< 1

n .]



C. Mathematical Induction

Suppose one is presented with the following sequence of equations:

1 = 1
1+3 = 4

1+3+5 = 9
1+3+5+7 = 16

1+3+5+7+9 = 25

It is clear that there is a pattern. The numbers on the right side of the equations are the squares 12, 22, 32,
42, and 52 and, in the equation with n2 on the right side, the left side is the sum of the first n odd numbers.
The odd numbers are

1 = 2 ·1−1
3 = 2 ·2−1
5 = 2 ·3−1
7 = 2 ·4−1

9 = 2 ·5−1

and from this it is clear that the nth odd number is 2n− 1. Hence, at least for n = 1, 2, 3, 4, or 5, the
following is true:

1+3+ · · ·+(2n−1) = n2 (Sn)

The question arises whether the statement Sn is true for every n. There is no hope of separately verifying
all these statements because there are infinitely many of them. A more subtle approach is required.

The idea is as follows: Suppose it is verified that the statement Sn+1 will be true whenever Sn is true.
That is, suppose we prove that, if Sn is true, then it necessarily follows that Sn+1 is also true. Then, if we
can show that S1 is true, it follows that S2 is true, and from this that S3 is true, hence that S4 is true, and
so on and on. This is the principle of induction. To express it more compactly, it is useful to have a short
way to express the assertion “If Sn is true, then Sn+1 is true.” As in Appendix B, we write this assertion as

Sn⇒ Sn+1

and read it as “ Sn implies Sn+1.” We can now state the principle of mathematical induction.

617
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The Principle of Mathematical Induction

Suppose Sn is a statement about the natural number n for each n = 1, 2, 3, . . . .
Suppose further that:

1. S1 is true.

2. Sn⇒ Sn+1 for every n≥ 1.

Then Sn is true for every n≥ 1.

This is one of the most useful techniques in all of mathematics. It applies in a wide variety of situations,
as the following examples illustrate.

Example C.1

Show that 1+2+ · · ·+n = 1
2n(n+1) for n≥ 1.

Solution. Let Sn be the statement: 1+2+ · · ·+n = 1
2n(n+1) for n≥ 1. We apply induction.

1. S1 is true. The statement S1 is 1 = 1
21(1+1), which is true.

2. Sn⇒ Sn+1. We assume that Sn is true for some n≥ 1—that is, that

1+2+ · · ·+n = 1
2n(n+1)

We must prove that the statement

Sn+1 : 1+2+ · · ·+(n+1) = 1
2(n+1)(n+2)

is also true, and we are entitled to use Sn to do so. Now the left side of Sn+1 is the sum of the first
n+1 positive integers. Hence the second-to-last term is n, so we can write

1+2+ · · ·+(n+1) = (1+2+ · · ·+n)+(n+1)

= 1
2n(n+1)+(n+1) using Sn

= 1
2(n+1)(n+2)

This shows that Sn+1 is true and so completes the induction.

In the verification that Sn⇒ Sn+1, we assume that Sn is true and use it to deduce that Sn+1 is true. The
assumption that Sn is true is sometimes called the induction hypothesis.

Example C.2

If x is any number such that x $= 1, show that 1+ x+ x2 + · · ·+ xn = xn+1−1
x−1 for n≥ 1.

Solution. Let Sn be the statement: 1+ x+ x2 + · · ·+ xn = xn+1−1
x−1 .
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1. S1 is true. S1 reads 1+ x = x2−1
x−1 , which is true because x2−1 = (x−1)(x+1).

2. Sn⇒ Sn+1. Assume the truth of Sn : 1+ x+ x2 + · · ·+ xn = xn+1−1
x−1 .

We must deduce from this the truth of Sn+1: 1+ x+ x2 + ·+ xn+1 = xn+2−1
x−1 . Starting with the left

side of Sn+1 and using the induction hypothesis, we find

1+ x+ x2 + · · ·+ xn+1 = (1+ x+ x2 + · · ·+ xn)+ xn+1

= xn+1−1
x−1 + xn+1

= xn+1−1+xn+1(x−1)
x−1

= xn+2−1
x−1

This shows that Sn+1 is true and so completes the induction.

Both of these examples involve formulas for a certain sum, and it is often convenient to use summation
notation. For example, ∑n

k=1(2k− 1) means that in the expression (2k− 1), k is to be given the values
k = 1, k = 2, k = 3, . . . , k = n, and then the resulting n numbers are to be added. The same thing applies
to other expressions involving k. For example,

n

∑
k=1

k3 = 13 +23 + · · ·+n3

5

∑
k=1

(3k−1) = (3 ·1−1)+(3 ·2−1)+(3 ·3−1)+(3 ·4−1)+(3 ·5−1)

The next example involves this notation.

Example C.3

Show that ∑n
k=1(3k2− k) = n2(n+1) for each n≥ 1.

Solution. Let Sn be the statement: ∑n
k=1(3k2− k) = n2(n+1).

1. S1 is true. S1 reads (3 ·12−1) = 12(1+1), which is true.

2. Sn⇒ Sn+1. Assume that Sn is true. We must prove Sn+1:

n+1

∑
k=1

(3k2− k) =
n

∑
k=1

(3k2− k)+ [3(n+1)2− (n+1)]

= n2(n+1)+(n+1)[3(n+1)−1] (using Sn)

= (n+1)[n2+3n+2]
= (n+1)[(n+1)(n+2)]

= (n+1)2(n+2)

This proves that Sn+1 is true.
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We now turn to examples wherein induction is used to prove propositions that do not involve sums.

Example C.4

Show that 7n +2 is a multiple of 3 for all n≥ 1.

Solution.

1. S1 is true: 71 +2 = 9 is a multiple of 3.

2. Sn⇒ Sn+1. Assume that 7n +2 is a multiple of 3 for some n≥ 1; say, 7n +2 = 3m for some
integer m. Then

7n+1 +2 = 7(7n)+2 = 7(3m−2)+2 = 21m−12 = 3(7m−4)

so 7n+1 +2 is also a multiple of 3. This proves that Sn+1 is true.

In all the foregoing examples, we have used the principle of induction starting at 1; that is, we have
verified that S1 is true and that Sn⇒ Sn+1 for each n ≥ 1, and then we have concluded that Sn is true for
every n≥ 1. But there is nothing special about 1 here. If m is some fixed integer and we verify that

1. Sm is true.

2. Sn⇒ Sn+1 for every n≥ m.

then it follows that Sn is true for every n ≥ m. This “extended” induction principle is just as plausible as
the induction principle and can, in fact, be proved by induction. The next example will illustrate it. Recall
that if n is a positive integer, the number n! (which is read “n-factorial”) is the product

n! = n(n−1)(n−2) · · ·3 ·2 ·1

of all the numbers from n to 1. Thus 2! = 2, 3! = 6, and so on.

Example C.5

Show that 2n < n! for all n≥ 4.

Solution. Observe that 2n < n! is actually false if n = 1, 2, 3.

1. S4 is true. 24 = 16 < 24 = 4!.

2. Sn⇒ Sn+1 if n≥ 4. Assume that Sn is true; that is, 2n < n!. Then

2n+1 = 2 ·2n

< 2 ·n! because 2n < n!
< (n+1)n! because 2 < n+1
= (n+1)!

Hence Sn+1 is true.
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Exercises for C

In Exercises 1–19, prove the given statement by in-
duction for all n≥ 1.
Exercise C.1 1+3+5+7+ · · ·+(2n−1) = n2

Exercise C.2 12 +22 + · · ·+n2 = 1
6n(n+1)(2n+1)

Exercise C.3 13 +23 + · · ·+n3 = (1+2+ · · ·+n)2

Exercise C.4 1 ·2+2 ·3+ · · ·+n(n+1)
= 1

3n(n+1)(n+2)

Exercise C.5 1 ·22 +2 ·32 + · · ·+n(n+1)2

= 1
12n(n+1)(n+2)(3n+5)

Exercise C.6 1
1·2 +

1
2·3 + · · ·+ 1

n(n+1) =
n

n+1

Exercise C.7 12 +32 + · · ·+(2n−1)2 = n
3 (4n2−1)

Exercise C.8 1
1·2·3 +

1
2·3·4 + · · ·+ 1

n(n+1)(n+2)

= n(n+3)
4(n+1)(n+2)

Exercise C.9 1+2+22 + · · ·+2n−1 = 2n−1

Exercise C.10 3+33 +35 + · · ·+32n−1 = 3
8(9

n−1)

Exercise C.11 1
12 +

1
22 + · · ·+ 1

n2 ≤ 2− 1
n

Exercise C.12 n < 2n

Exercise C.13 For any integer m > 0, m!n! < (m+n)!

Exercise C.14 1√
1
+ 1√

2
+ · · ·+ 1√

n
≤ 2
√

n−1

Exercise C.15 1√
1
+ 1√

2
+ · · ·+ 1√

n
≥
√

n

Exercise C.16 n3 +(n+ 1)3 +(n+ 2)3 is a multiple of
9.

Exercise C.17 5n+3 is a multiple of 4.

Exercise C.18 n3−n is a multiple of 3.

Exercise C.19 32n+1 +2n+2 is a multiple of 7.

Exercise C.20 Let Bn = 1 ·1!+2 ·2!+3 ·3!+ · · ·+n ·n!
Find a formula for Bn and prove it.

Exercise C.21 Let

An = (1− 1
2)(1−

1
3)(1−

1
4) · · · (1−

1
n)

Find a formula for An and prove it.

Exercise C.22 Suppose Sn is a statement about n for
each n ≥ 1. Explain what must be done to prove that Sn

is true for all n≥ 1 if it is known that:

a. Sn⇒ Sn+2 for each n≥ 1.

b. Sn⇒ Sn+8 for each n≥ 1.

c. Sn⇒ Sn+1 for each n≥ 10.

d. Both Sn and Sn+1⇒ Sn+2 for each n≥ 1.

Exercise C.23 If Sn is a statement for each n≥ 1, argue
that Sn is true for all n≥ 1 if it is known that the following
two conditions hold:

1. Sn⇒ Sn−1 for each n≥ 2.

2. Sn is true for infinitely many values of n.

Exercise C.24 Suppose a sequence a1, a2, . . . of num-
bers is given that satisfies:

1. a1 = 2.

2. an+1 = 2an for each n≥ 1.

Formulate a theorem giving an in terms of n, and
prove your result by induction.

Exercise C.25 Suppose a sequence a1, a2, . . . of num-
bers is given that satisfies:

1. a1 = b.

2. an+1 = can +b for n = 1, 2, 3, . . . .

Formulate a theorem giving an in terms of n, and
prove your result by induction.

Exercise C.26

a. Show that n2 ≤ 2n for all n≥ 4.

b. Show that n3 ≤ 2n for all n≥ 10.





D. Polynomials

Expressions like 3− 5x and 1+ 3x− 2x2 are examples of polynomials. In general, a polynomial is an
expression of the form

f (x) = a0 +a1x+a2x2 + · · ·+anxn

where the ai are numbers, called the coefficients of the polynomial, and x is a variable called an indeter-

minate. The number a0 is called the constant coefficient of the polynomial. The polynomial with every
coefficient zero is called the zero polynomial, and is denoted simply as 0.

If f (x) $= 0, the coefficient of the highest power of x appearing in f (x) is called the leading coefficient
of f (x), and the highest power itself is called the degree of the polynomial and is denoted deg ( f (x)).
Hence

−1+5x+3x2 has constant coefficient −1, leading coefficient 3, and degree 2,
7 has constant coefficient 7, leading coefficient 7, and degree 0,
6x−3x3 + x4− x5 has constant coefficient 0, leading coefficient −1, and degree 5.

We do not define the degree of the zero polynomial.

Two polynomials f (x) and g(x) are called equal if every coefficient of f (x) is the same as the corre-
sponding coefficient of g(x). More precisely, if

f (x) = a0 +a1x+a2x2 + · · · and g(x) = b0 +b1x+b2x2 + · · ·

are polynomials, then

f (x) = g(x) if and only if a0 = b0, a1 = b1, a2 = b2, . . .

In particular, this means that

f (x) = 0 is the zero polynomial if and only if a0 = 0, a1 = 0, a2 = 0, . . .

This is the reason for calling x an indeterminate.

Let f (x) and g(x) denote nonzero polynomials of degrees n and m respectively, say

f (x) = a0 +a1x+a2x2 + · · ·+anxn and g(x) = b0 +b1x+b2x2 + · · ·+bmxm

where an $= 0 and bm $= 0. If these expressions are multiplied, the result is

f (x)g(x) = a0b0 +(a0b1 +a1b0)x+(a0b2 +a1b1 +a2b0)x
2 + · · ·+anbmxn+m

Since an and bm are nonzero numbers, their product anbm $= 0 and we have
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Theorem D.1

If f (x) and g(x) are nonzero polynomials of degrees n and m respectively, their product f (x)g(x) is
also nonzero and

deg [ f (x)g(x)] = n+m

Example D.1

(2− x+3x2)(3+ x2−5x3) = 6−3x+11x2−11x3 +8x4−15x5.

If f (x) is any polynomial, the next theorem shows that f (x)− f (a) is a multiple of the polynomial
x−a. In fact we have

Theorem D.2: Remainder Theorem

If f (x) is a polynomial of degree n≥ 1 and a is any number, then there exists a polynomial q(x)
such that

f (x) = (x−a)q(x)+ f (a)

where deg (q(x)) = n−1.

Proof. Write f (x) = a0 +a1x+a2x2 + · · ·+anxn where the ai are numbers, so that

f (a) = a0 +a1a+a2a2 + · · ·+anan

If these expressions are subtracted, the constant terms cancel and we obtain

f (x)− f (a) = a1(x−a)+a2(x
2−a2)+ · · ·+an(x

n−an).

Hence it suffices to show that, for each k ≥ 1, xk−ak = (x−a)p(x) for some polynomial p(x) of degree
k−1. This is clear if k = 1. If it holds for some value k, the fact that

xk+1−ak+1 = (x−a)xk +a(xk−ak)

shows that it holds for k+1. Hence the proof is complete by induction.

There is a systematic procedure for finding the polynomial q(x) in the remainder theorem. It is illus-
trated below for f (x) = x3−3x2 + x−1 and a = 2. The polynomial q(x) is generated on the top line one
term at a time as follows: First x2 is chosen because x2(x− 2) has the same x3-term as f (x), and this is
subtracted from f (x) to leave a “remainder” of −x2 + x−1. Next, the second term on top is −x because
−x(x− 2) has the same x2-term, and this is subtracted to leave −x− 1. Finally, the third term on top is
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−1, and the process ends with a “remainder” of −3.

x2− x− 1

x−2
)

x3− 3x2 + x− 1

x3− 2x2

−x2 + x− 1
−x2 + 2x

−x− 1
−x+ 2
− 3

Hence x3−3x2+x−1 = (x−2)(x2−x−1)+(−3). The final remainder is−3 = f (2) as is easily verified.
This procedure is called the division algorithm.1

A real number a is called a root of the polynomial f (x) if

f (a) = 0

Hence for example, 1 is a root of f (x) = 2− x+3x2−4x3, but −1 is not a root because f (−1) = 10 $= 0.
If f (x) is a multiple of x−a, we say that x−a is a factor of f (x). Hence the remainder theorem shows
immediately that if a is root of f (x), then x−a is factor of f (x). But the converse is also true: If x−a is a
factor of f (x), say f (x) = (x−a)q(x), then f (a) = (a−a)q(a) = 0. This proves the

Theorem D.3: Factor Theorem

If f (x) is a polynomial and a is a number, then x−a is a factor of f (x) if and only if a is a root of
f (x).

Example D.2

If f (x) = x3−2x2−6x+4, then f (−2) = 0, so x− (−2) = x+2 is a factor of f (x). In fact, the
division algorithm gives f (x) = (x+2)(x2−4x+2).

Consider the polynomial f (x) = x3−3x+2. Then 1 is clearly a root of f (x), and the division algorithm
gives f (x) = (x− 1)(x2 + x− 2). But 1 is also a root of x2 + x− 2; in fact, x2 + x− 2 = (x− 1)(x+ 2).
Hence

f (x) = (x−1)2(x+2)

and we say that the root 1 has multiplicity 2.

Note that non-zero constant polynomials f (x) = b $= 0 have no roots. However, there do exist non-
constant polynomials with no roots. For example, if g(x) = x2 +1, then g(a) = a2 +1≥ 1 for every real
number a, so a is not a root. However the complex number i is a root of g(x); we return to this below.

1This procedure can be used to divide f (x) by any nonzero polynomial d(x) in place of x− a; the remainder then is a
polynomial that is either zero or of degree less than the degree of d(x).
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Now suppose that f (x) is any nonzero polynomial. We claim that it can be factored in the following
form:

f (x) = (x−a1)(x−a2) · · ·(x−am)g(x)

where a1, a2, . . . , am are the roots of f (x) and g(x) has no root (where the ai may have repetitions, and
may not appear at all if f (x) has no real root).

By the above calculation f (x) = x3−3x+2 = (x−1)2(x+2) has roots 1 and−2, with 1 of multiplicity
two (and g(x) = 1). Counting the root −2 once, we say that f (x) has three roots counting multiplicities.
The next theorem shows that no polynomial can have more roots than its degree even if multiplicities are
counted.

Theorem D.4

If f (x) is a nonzero polynomial of degree n, then f (x) has at most n roots counting multiplicities.

Proof. If n = 0, then f (x) is a constant and has no roots. So the theorem is true if n = 0. (It also holds for
n = 1 because, if f (x) = a+ bx where b $= 0, then the only root is −a

b .) In general, suppose inductively
that the theorem holds for some value of n ≥ 0, and let f (x) have degree n+1. We must show that f (x)
has at most n+1 roots counting multiplicities. This is certainly true if f (x) has no root. On the other hand,
if a is a root of f (x), the factor theorem shows that f (x) = (x−a)q(x) for some polynomial q(x), and q(x)
has degree n by Theorem D.1. By induction, q(x) has at most n roots. But if b is any root of f (x), then

(b−a)q(b) = f (b) = 0

so either b = a or b is a root of q(x). It follows that f (x) has at most n roots. This completes the induction
and so proves Theorem D.4.

As we have seen, a polynomial may have no root, for example f (x) = x2 + 1. Of course f (x) has
complex roots i and −i, where i is the complex number such that i2 = −1. But Theorem D.4 even holds
for complex roots: the number of complex roots (counting multiplicities) cannot exceed the degree of the
polynomial. Moreover, the fundamental theorem of algebra asserts that the only nonzero polynomials with
no complex root are the non-zero constant polynomials. This is discussed more in Appendix A, Theorems
A.4 and A.5.


