1. (1 point) Library/Rochester/setLinearAlgebra1Systems/ur_la_ 1_22.pg
The reduced row-echelon forms of the augmented matrices of four systems are given below. How many solutions does each system have?
(1)

$$
\left[\begin{array}{rr|r}
1 & 0 & 3 \\
0 & 1 & -13
\end{array}\right]
$$

- A. No solutions
- B. Unique solution
- C. Infinitely many solutions
- D. None of the above
(2)

$$
\left[\begin{array}{rrr|r}
0 & 1 & 0 & -7 \\
0 & 0 & 1 & 10
\end{array}\right]
$$

- A. No solutions
- B. Unique solution
- C. Infinitely many solutions
- D. None of the above
(3) $\left[\begin{array}{rrr|r}1 & 0 & 17 & 0 \\ 0 & 1 & 16 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$
- A. No solutions
- B. Infinitely many solutions
- C. Unique solution
- D. None of the above
(4) $\left[\begin{array}{lll|r}1 & 0 & 0 & 14 \\ 0 & 0 & 1 & -9\end{array}\right]$
- A. Unique solution
- B. Infinitely many solutions
- C. No solutions
- D. None of the above

2. (1 point) Library/WHFreeman/Holt_linear_algebra/Chaps_1-4/2 .3.13.pg

Let $A=\left[\begin{array}{cc}-5 & -25 \\ 4 & 19\end{array}\right]$.
We want to determine if the equation $A \mathbf{x}=\mathbf{0}$ has nontrivial solutions.
To do that we row reduce A.
To do this we add \qquad times the first row to the second.
We conclude that

- A. The equation has no nontrivial solutions.
- B. The equation has nontrivial solutions.
- C. We cannot tell if the equation has nontrivial solutions or not.

3. (1 point) Library/WHFreeman/Holt_linear_algebra/Chaps_1-4/2 .3.2.pg

$$
\text { Let } \mathbf{u}=\left[\begin{array}{c}
-2 \\
2
\end{array}\right] \text {, and } \mathbf{v}=\left[\begin{array}{c}
-2 \\
-2
\end{array}\right]
$$

We want to determine if $\{\mathbf{u}, \mathbf{v}\}$ is linearly independent. To do that we write the vectors as columns of a matrix A and row reduce that matrix.

To check this we add __ times the first row to the second.

We conclude that

- A. The set $\{\mathbf{u}, \mathbf{v}\}$ is linearly dependent.
- B. The set $\{\mathbf{u}, \mathbf{v}\}$ is linearly independent.
- C. We cannot tell if the set $\{\mathbf{u}, \mathbf{v}\}$ is linearly independent or not.

4. (1 point) Library/WHFreeman/Holt_linear_algebra/Chaps_1-4/2 .3.5.pg

$$
\text { Let } \mathbf{u}=\left[\begin{array}{c}
4 \\
-2 \\
3
\end{array}\right], \mathbf{v}=\left[\begin{array}{l}
4 \\
3 \\
5
\end{array}\right], \text { and } \mathbf{w}=\left[\begin{array}{c}
-12 \\
-14 \\
-22
\end{array}\right]
$$

We want to determine if $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is linearly independent. To do that we write the vectors as columns of a matrix A and row reduce that matrix.

To check this we add __ times the first row to the second. We then add __ times the first row to the third. We then add __ times the new second row to the new third row. We conclude that

- A. The set $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is linearly dependent.
- B. The set $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is linearly independent.
- C. We cannot tell if the set $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is linearly independent or not.

5. (1 point) Library/WHFreeman/Holt_linear_algebra/Chaps_1-4/2 .1.27.pg

Let $\mathbf{a}_{1}=\left[\begin{array}{l}-1 \\ -2\end{array}\right], \mathbf{a}_{2}=\left[\begin{array}{c}1 \\ -1\end{array}\right]$, and $\mathbf{b}=\left[\begin{array}{c}0 \\ -12\end{array}\right]$.
Is \mathbf{b} a linear combination of \mathbf{a}_{1} and \mathbf{a}_{2} ?

- A. Yes \mathbf{b} is a linear combination.
- B. b is not a linear combination.
- C. We cannot tell if \mathbf{b} is a linear combination.

Either fill in the coefficients of the vector equation, or enter "NONE" if no solution is possible.
$\mathbf{b}=_\mathbf{a}_{1}+\ldots \mathbf{a}_{2}$
6. (1 point) Library/Hope/Multi1/03-03-Linear-combinations/Lin _combi_08.pg
If possible, write $2 x-4-2 x^{2}$ as a linear combination of $x-x^{2}, 2 x-x^{2}$ and $2 x-1-x^{2}$. Otherwise, enter $D N E$ in all answer blanks.
$2 x-4-2 x^{2}=-\left(x-x^{2}\right)+-\left(2 x-x^{2}\right)+-\left(2 x-1-x^{2}\right)$.
7. (1 point) Library/Rochester/setLinearAlgebral1Eigenvalues/u r_la_11_17.pg
The matrix

$$
A=\left[\begin{array}{cc}
-7 & 2 \\
-2 & -11
\end{array}\right]
$$

has one eigenvalue of multiplicity 2. Find this eigenvalue and the dimension of its associated eigenspace.

The eigenvalue \qquad has an associated eigenspace with dimension
8. (1 point) Library/TCNJ/TCNJ_SolutionSetsLinearSystems/probl em1.pg
Find a set of vectors $\{\vec{u}, \vec{v}\}$ in \mathbb{R}^{4} that spans the solution set of the equations

$$
\begin{aligned}
& \left\{\begin{array}{r}
w-x-y-3 z \\
5 w+2 x+y-3 z
\end{array}=0\right. \\
& \vec{u}=\left[\begin{array}{l}
- \\
-
\end{array}\right], \vec{v}=\left[\begin{array}{l}
- \\
- \\
-
\end{array}\right]
\end{aligned}
$$

(The components of these vectors appear in alphabetical order: ($\mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z}$)).
9. (1 point) Library/TCNJ/TCNJ_BasesLinearlyIndependentSet/pro blem8.pg

Let W be the set: $\left[\begin{array}{c}-2 \\ 3 \\ 0\end{array}\right],\left[\begin{array}{c}6 \\ -1 \\ 5\end{array}\right]$.
Determine if W is a basis for \mathbb{R}^{3} and check the correct answer(s) below.

- A. W is not a basis because it does not span \mathbb{R}^{3}.
- B. W is not a basis because it is linearly dependent.
- C. W is a basis.

10. (1 point) Library/TCNJ/TCNJ_BasesLinearlyIndependentSet/p roblem6.pg

Let W be the set: $\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$.
Determine if W is a basis for \mathbb{R}^{3} and check the correct answer(s) below.

- A. W is a basis.
- B. W is not a basis because it does not span \mathbb{R}^{3}.
- C. W is not a basis because it is linearly dependent.

11. (1 point) Library/TCNJ/TCNJ_Diagonalization/problem3.pg Let $A=\left[\begin{array}{cc}9 & -2 \\ 6 & 2\end{array}\right]$.
Find two different diagonal matrices D and the corresponding matrix S such that $A=S D S^{-1}$.

$$
\begin{array}{r}
\text { atrix } S \text { such that } A=S D S^{-1} . \\
D_{1}=\left[\begin{array}{cc}
\overline{0} & -
\end{array}\right] \quad S_{1}=\left[\begin{array}{ll}
- & - \\
- & -
\end{array}\right] . \\
D_{2}=\left[\begin{array}{ll}
\overline{0} & -
\end{array}\right] \quad S_{2}=\left[\begin{array}{ll}
- & - \\
- & -
\end{array}\right] .
\end{array}
$$

12. (1 point) Library/Hope/Multil/05-04-Diagonalization/DiagR_ 02.pg

Let

$$
A=\left[\begin{array}{cc}
-5 & -4 \\
8 & 7
\end{array}\right]
$$

If possible, find an invertible matrix P so that $D=P^{-1} A P$ is a diagonal matrix. If it is not possible, enter the identity matrix for P and the matrix A for D. You must enter a number in every answer blank for the answer evaluator to work properly.
$P=\left[\begin{array}{ll}- & - \\ - & -\end{array}\right]$.
$D=\left[\begin{array}{ll}- & - \\ - & -\end{array}\right]$.
Is A diagonalizable over \mathbb{R} ?

- choose
- diagonalizable
- not diagonalizable

Be sure you can explain why or why not.
13. (1 point) Library/Rochester/setLinearAlgebral1Eigenvalues/ ur_la_11_19.pg
The matrix

$$
A=\left[\begin{array}{ccc}
1 & -1 & -1 \\
-1 & 1 & 1 \\
1 & -1 & -1
\end{array}\right]
$$

has two real eigenvalues, one of multiplicity 1 and one of multiplicity 2 . Find the eigenvalues and a basis for each eigenspace.

The eigenvalue λ_{1} is ___ and a basis for its associated eigenspace is $\left\{\left[\begin{array}{l}- \\ -\end{array}\right]\right.$.
The eigenvalue λ_{2} is and a basis for its associated eigenspace is $\left\{\left[\begin{array}{l}- \\ -\end{array}\right],\left[\begin{array}{l}- \\ - \\ -\end{array}\right]\right\}$.
14. (1 point) Library/TCNJ/TCNJ_LinearIndependence/problem5.pg

Let $A=\left[\begin{array}{l}16 \\ 15 \\ 10\end{array}\right], B=\left[\begin{array}{l}4 \\ 3 \\ 1\end{array}\right]$, and $C=\left[\begin{array}{c}-4 \\ -4 \\ -3\end{array}\right]$
Are A, B and C linearly dependent, or are they linearly independent?

- Linearly independent
- Linearly dependent

If they are linearly dependent, determine a non-trivial linear relation. Otherwise, if the vectors are linearly independent, enter 0 's for the coefficients, since that relationship always holds.
$\longrightarrow \quad A+_B+\ldots C=0$.
15. (1 point) Library/WHFreeman/Holt_linear_algebra/Chaps_1-4 /4.2.53.pg
Indicate whether the following statement is true or false?
? 1. If u_{1}, u_{2}, u_{3} is a basis for R^{3}, then $\operatorname{span} u_{1}, u_{2}$ is a plane.
16. (1 point) Library/TCNJ/TCNJ_VectorEquations/problem5.pg

Let $H=\operatorname{span}\{u, v\}$. For each of the following sets of vectors determine whether H is a line or a plane.

