Quiz 3 Review

Lee 12
Q Let ω be the subspace of vectors in \mathbb{R}^{3} whose 3rd entry is 0 .

- Is $s:=\left\{\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]\right\}$ a spanning set of ω ?

No, S is not a subset of ω

- Is $s:=\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}2 \\ 3 \\ 0\end{array}\right]\right\}$ a spanning set of w ?

Yes. Computation: $\left.\left[\begin{array}{lll|l}1 & 0 & 2 & 9 \\ 0 & 1 & 3 & 1\end{array}\right] \quad \begin{array}{c}\text { No leading } 1 \\ 0 \\ \text { means }\end{array}\right]$ right col means the system is Consistent
already in REF
So there is a solution for $c_{1}\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]+c_{2}\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]+c_{3}\left[\begin{array}{l}2 \\ 3 \\ 0\end{array}\right]=\left[\begin{array}{l}a \\ b \\ 0\end{array}\right]$ for all $\left[\begin{array}{l}a \\ b \\ 0\end{array}\right]$ in ω.

- Is S above linearly independent?

No, $\left[\begin{array}{llll}1 & 0 & 2 & 0 \\ 0 & 1 & 3 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$ has infinitely many solutions.
. Is $\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}2 \\ 3 \\ 0\end{array}\right]\right\}$ a basis for W?
Yes. Computation: $\left[\begin{array}{ll|l}1 & 2 & a \\ 0 & 3 & b \\ 0 & 0 & 0\end{array}\right] \rightarrow \underbrace{\left[\begin{array}{ll|l}1 & 2 & a \\ 0 & 1 & b / 3 \\ 0 & 0 & 0\end{array}\right]}_{\text {REF }}$
There is one unique linear combination
$c_{1}\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]+c_{2}\left[\begin{array}{l}2 \\ 3 \\ 0\end{array}\right]=\left[\begin{array}{l}a \\ b \\ 0\end{array}\right]$ for all $\left[\begin{array}{l}a \\ b \\ 0\end{array}\right]$ in ω.

Def
Lect $13 a$
A basis of a subspace ω of \mathbb{R}^{n} is a set S of vectors in W where

- S is linearly independent
- S is a spanning set of S
Q : Let W be the subspace of \mathbb{R}^{3} consisting of vectors whose entries sum to 0 . No,
- Is $S:=\left\{\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]\right\}$ a basis for ω ? they are not even in ω
- Is $S:=\left\{\left[\begin{array}{c}1 \\ -1 \\ 0\end{array}\right],\left[\begin{array}{r}-1 \\ 1 \\ 0\end{array}\right]\right\}$ a basis for w? No, they are not linearly independent.

$$
\left[\begin{array}{ccc}
1 & -1 & 0 \\
-1 & 1 & 0 \\
0 & 1 & 0
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
1 & -1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

- Is $s:=\left\{\left[\begin{array}{c}1 \\ -1 \\ 0\end{array}\right],\left[\begin{array}{c}0 \\ 1 \\ -1\end{array}\right]\right\}$ a basis for w ?

Ans $\left[\begin{array}{cc|c}1 & 0 & a \\ -1 & 1 & b \\ 0 & -1 & -a-b\end{array}\right] \rightarrow\left[\begin{array}{cc|c}1 & 0 & a \\ 0 & 1 & a+b \\ 0 & -1 & a-b\end{array}\right] \rightarrow\left[\begin{array}{cc|c}1 & 0 & a \\ 0 & 1 & a+b \\ 0 & 0 & 0\end{array}\right]$ yes, every alt in ω is of S.
Q. The $\underbrace{\text { standard basis for } \mathbb{R}^{3}}$ is... $\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]\right\}$.

- Is $\left\{\left[\begin{array}{l}1 \\ 2\end{array}\right],\left[\begin{array}{l}2 \\ 1\end{array}\right]\right\}$ a basis for \mathbb{R}^{2} ?
$y\left(s, \quad \operatorname{det}\left(\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right]\right) \neq 0\right.$.
- Is $\left\{\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{l}4 \\ 5 \\ 6\end{array}\right]\right\}$ a basis for \mathbb{R}^{3} ?

No, too few (must have 3 vectors to be a basis)

Lee $\mid 3 b$ (Basis Algo for in (A))

Q: Let $A:=\left[\begin{array}{llll}1 & -1 & 0 & 0 \\ 0 & 0 & 1 & 6 \\ 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 2\end{array}\right]$. Find a basis for $\operatorname{im}(A)$
Ans
Put A in REF

$$
\left[\begin{array}{cccc}
1 & -1 & 0 & 0 \\
0 & 0 & (1) & 6 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Take the original 1st, 3rd, 4 th cols of A :
A basis for $\operatorname{im}(A)$ is $\left\{\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 6 \\ 2 \\ 2\end{array}\right]\right\}$.
Q: $\left.\begin{array}{rl} & \operatorname{rank}(t) ? \\ & \operatorname{dim}(\operatorname{im}(A)) ?\end{array}\right\} \quad$ Aus is 3

Lee 14 a (Basis Algo for the kernel of a matrix)

Q: Let $A:=\left[\begin{array}{cccc}1 & -1 & 0 & 0 \\ 0 & 0 & 1 & 6 \\ 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 2\end{array}\right]$. Find a basis for $\operatorname{ker}(A)$.
Ans
Put A in REF

$$
\left[\begin{array}{cccc}
1 & -1 & 0 & 0 \\
0 & 0 & 1 & 6 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Write a general solution to $A\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right]$
Since Ind col has no Leading 1, set $x_{2}=t$

$$
\left.\begin{array}{c}
x_{1}-2 x_{2}=0 \\
x_{3}-6 x_{4}=0 \\
x_{4}=0
\end{array}\right\} \Rightarrow \begin{gathered}
x_{1}-2 t=0 \Rightarrow \begin{array}{l}
x_{1}=2 t \\
x_{3}=0
\end{array}
\end{gathered}
$$

Gen. sol: $\left[\begin{array}{c}2 t \\ t \\ 0 \\ 0\end{array}\right]=t\left[\begin{array}{l}2 \\ 1 \\ 0 \\ 0\end{array}\right]$.
A basis for $\operatorname{ker}(A)$ is $\left\{\left[\begin{array}{l}2 \\ 1 \\ 0 \\ 0\end{array}\right]\right\}$

Lee $14 b$
Subspaces of \mathbb{R}^{4} whose dimension is easy to compute

- $\left\{\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right]\right\}$ has $\operatorname{dim} 0$
- If $\left[\begin{array}{l}a \\ b \\ c \\ d\end{array}\right]$ is not the zero vector, the subspace
- If V is a subspace of \mathbb{R}^{4} with dim 4, then V must be the entire \mathbb{R}^{4}.
$Q:$ Let $A:=\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right]$.
- $\operatorname{rank}(A)$?

- $\operatorname{dim}(\operatorname{im}(A))$? (same as $\operatorname{rank}(t)=2$)
- $\operatorname{dim}(\operatorname{ker}(A)) ? \underbrace{\text { width }(A)}_{2}=\underbrace{\operatorname{rank}(A)}_{2}+\underbrace{\operatorname{dim}(\operatorname{ker}(A))}_{\text {must be }}$. Nullity
Th er
- Describe $\operatorname{ker}(A)$ Ans $\left\{\left[\begin{array}{l}0 \\ 0\end{array}\right]\right\}$, the zero subspace

Lee $15 a$

Def If A is an $n \times n$ matrix, an eigenbasis of A is a basis for \mathbb{R}^{n} consisting of eigenvectors of A.
$Q: \operatorname{Let} A:=\left[\begin{array}{lll}2 & 2 & 4 \\ 0 & 1 & -2 \\ 0 & 1 & 4\end{array}\right]$. Let $S:=\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}0 \\ -2 \\ 1\end{array}\right],\left[\begin{array}{c}2 \\ -1 \\ 1\end{array}\right]\right\}$.
Do S form an eigenbasis for A ?
thus (1) Check that the vectors in S are eigenvectors

$$
\begin{array}{ll}
\text { - } \left.\begin{array}{rl}
\underbrace{2}_{A} & 2 \\
0 & 1 \\
0 & 1 \\
0 & -2 \\
\hline
\end{array}\right]
\end{array}\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
2 \\
0 \\
0
\end{array}\right]=2\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

(2) Check that S is a basis for \mathbb{R}^{3}

You can check that $\operatorname{det}($ concatenation $) \neq 0$
OR Check rank (Concatenation) $=3$
or check concatenation is invertible.
D I'll check this
$\underbrace{\left[\begin{array}{ccc}1 & 0 & 2 \\ 0 & -2 & -1 \\ 0 & 1 & 1\end{array}\right] \underset{R_{2} \text { ap } R_{3}}{\rightarrow}\left[\begin{array}{ccc}1 & 0 & 2 \\ 0 & 1 & 1 \\ 0 & -2 & -1\end{array}\right]} \rightarrow\left[\begin{array}{lll}1 & 0 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right]$
so rank (concatenation of $s)=3$
Concatenation

$$
R_{3} \mapsto 2 R_{2}+R_{3}
$$

\therefore Yes, S is an eigenbasis of A.

Lee 15 b

- Algorithm to find an eigenbasis for an $n \times n$ matrix A or show A does not have an eigenbasis.
(1) Find all eigenvalues λ of A
(2) For each λ, find a basis of $\underbrace{\text { of } A}_{\text {the } \lambda \text {-eigenspace }(A-\lambda I d)}$
(3) Put all vectors from part (2) together.
- If there are n vectors, the set is an eigenbasis
- If there are fewer than n, A has no eigenbasis.

Q: Let $A:=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$ be a 3×3 matrix
(1) with eigenvalues 1 and 7 .
(2) dimension of $\operatorname{im}(A-7 I d)=1$

Does A have an eigenbasis?
Answer (2). Rank-nullity Thm says: width $(M)=\operatorname{dim}(\operatorname{im}(M))+\operatorname{dim}(k e r(M))$

$$
3=4 i d \operatorname{ch}(A-7 I d)=1+\operatorname{dim}(\operatorname{ker}(A-7 I d)
$$

So dimension of the 7 -eigenspace of A is $3-1=2$. A basis for this 7 -eigenspace of A has two vectors.

- dimension of the 1-eigenspace of A is at least 1 (since it contains a $($-eigenvector of A).

Step 3:- We have two eigenvectors from the basis of the 7 -eigenspace and at least one eigenvector from the basis of the (-eigenspace, so A has an eigenbasis

Lee $15 c$
Def/Fact A matrix M with an eigenbasis is diagonalizable, ie. we can write $M=P D P^{-1}$ where $D=\left[\lambda_{1}, \lambda_{n}\right]$ is a diagonal matrix w/ $\lambda_{1}, \ldots, \lambda_{n}$ eigenvalues of A
and P is a concatenation of the eigenbasis (the order has to match $\lambda_{1}, \ldots, \lambda_{n}$).

Q: A is a 5×5 matrix with eigenvalues $0,1,2,5,6$.

- Does A have an eigenbasis? Ans Yes, each λ-ergenspace contributes one eigenvector
- Is A diagonalizable? Ans Yes, since A has an eigenbasis.
$Q:$ Let $A=\left[\begin{array}{ccc}3 & -1 & 2 \\ 0 & 2 & -2 \\ 0 & 0 & 1\end{array}\right] . \quad \begin{array}{ll}\text { I computed an eigenbasis of } A \text { : } \\ & {\left[\begin{array}{l}1 \\ 0\end{array}\right]\left[\begin{array}{l}1 \\ 1\end{array}\right]\left[\begin{array}{l}0 \\ 2\end{array}\right]}\end{array}$

$$
\begin{aligned}
& {\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
2 \\
1
\end{array}\right]} \\
& \lambda_{1}=3 \quad \lambda_{2}=2 \quad \lambda_{1}=1
\end{aligned}
$$

- Write a diagonalization of A
- Write A^{100} using this diagonalization.

Answer . Let $P:=\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 1\end{array}\right]$. Then $A=P \underbrace{\left[\begin{array}{lll}3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1\end{array}\right]}_{D} P^{-1}$.
$0 A^{100}=\left(P D P^{-1}\right)^{100}$

$$
\begin{aligned}
A^{100} & =\left(P D P^{-1}\right)^{100} \\
& =P D P^{-1} P D P^{-1} P D P^{-1} \ldots P D P^{-1} \\
& =P D^{100} P^{-1} \\
& =P\left[\begin{array}{lll}
3^{100} & 0 & 0 \\
0 & 2^{100} & 0 \\
0 & 0 & 1
\end{array}\right] P^{-1}
\end{aligned}
$$

Q: Let $M=\left[\begin{array}{llll}1 & 3 & 7 & 0 \\ 3 & 0 & 6 & 0 \\ 7 & 6 & 2 & 0 \\ 0 & 0 & 0 & 5\end{array}\right]$. Does M have an eigen $\begin{gathered}\text { is } M \text { diagonalizable? }\end{gathered}$
Ans Yes, by spectral Thu (since M is symmetric: $M^{\top}=M$).
$\operatorname{Lec} 16$

- Idea

A vector space is a set V in which...

- there is a rule to add any two elements in V
- there is a rule to multiply any eft in V by a number and both operations "behave like" vector addition \& vector scalar multiplication. Note: Every vector space has a "zero" element.
- Examples of vector spaces
- \mathbb{R}^{n} vectors of height n
- \mathbb{P} all polynomials in x
- \mathbb{P}_{5} all polynomials of degree at most 5
- C^{∞} all smooth functions
- Solutions to the differential equation $f^{\prime \prime}=-f$
- Solutions to the differential equation $f^{\prime}=f$
- Any subspace of a vector space is itself a vector space (with respect to the same addition and scalar multi rule)

Q: is $x^{3}+5 x$ a scalar multiple of $x^{2}+5$?
Answer is there a number c where $x^{3}+5 x=c\left(x^{2}+5\right)$?
No!
Q: Write x^{2} as a linear combination of $1+2 x+x^{2}, 1+x$, and 1 . Answer Find c_{1}, c_{2}, c_{3} so that $\left.x^{2}=C_{1}\left(1+2 x+x^{2}\right)+C_{2}(1+x)+C_{3} C_{1}\right)$.
Rewrite in standard form: $\quad x^{2}+0 x+0.1=\left(c_{1}\right) x^{2}+\left(2 c_{1}+c_{2}\right) x+\left(c_{1}+c_{2}+c_{3}\right)$

$$
\left.\begin{array}{rl}
c_{1} & =\square \\
2 c_{1}+c_{2} & =0 \\
c_{1}+c_{2}+c_{3} & =0
\end{array}\right\} \Rightarrow \begin{aligned}
& c_{2}=-2 \\
& c_{3}=-1+2=\square
\end{aligned}
$$

So $x^{2}=1\left(1+2 x+x^{2}\right)+1-2(1+x)+1(1)$.

Cont lee 16
Examples of subspaces of \mathbb{P} (and therefore examples of vector spaces):

- \mathbb{R}_{5}
-Set of polynomials with a factor of $(x+1), ?$ Note: these

$$
\{(x+1) f \mid f \text { in } \mathbb{P}\}
$$

- Set of polynomials which has -1 as a zero,

$$
\{f \text { in } \mathbb{P} \mid f(-1)=0\}
$$

Examples of subsets of \mathbb{P} that are not subspaces

- Set of polynomials of degree exactly 5

Why? The zero polynomial is not in this set

- Set of polynomials $f(x)$ where $f(-1)=6$.

Why? The zero polynomial is not in this set

- Examples of subspaces of C^{∞} (hence examples of vector spaces)
- The set of solutions to $f^{\prime \prime}=-f$

