Quiz 3 Review

$$C_1 \begin{bmatrix} c \\ 0 \\ 0 \end{bmatrix} + C_2 \begin{bmatrix} 2 \\ 3 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ b \\ 0 \end{bmatrix}$$
 for all $\begin{bmatrix} 4 \\ b \\ 0 \end{bmatrix}$ in W .

Q: Let W be the subspace of
$$\mathbb{R}^{3}$$
 consisting of
Vectors whose entries sum to D. No,
. Is S:= $\left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\}^{1}$ a basis for \mathbb{W}^{2} they are not
even in W
. Is S:= $\left\{ \begin{bmatrix} -1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \end{bmatrix} \right\}^{2}$ basis for \mathbb{W}^{2} . No, they are not
independent.
Is S:= $\left\{ \begin{bmatrix} -1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \end{bmatrix} \right\}^{2}$ basis for \mathbb{W}^{2} . No, they are not
independent.
 $\begin{bmatrix} 1 -1 \\ 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 -1 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix}$
. Is S:= $\left\{ \begin{bmatrix} -1 \\ -1 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right\}^{2}$ basis for \mathbb{W}^{2}
. Is S:= $\left\{ \begin{bmatrix} -1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \left\{ \begin{array}{c} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right\}^{2}$
. Is $\left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \end{bmatrix} \right\}$ a basis for \mathbb{R}^{3} is ... $\left\{ \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\}^{2}$.
. Is $\left\{ \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \end{bmatrix} \right\}$ a basis for \mathbb{R}^{2} ?
. No, too few
. Is $\left\{ \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 4 \\ 3 \end{bmatrix}, \begin{bmatrix} 4 \\ 5 \end{bmatrix} \right\}$ a basis for \mathbb{R}^{2} ?
. No, two few
. Le a basis for \mathbb{R}^{3} is ...

.

$$\begin{aligned} \hat{Q} : \text{Let } A := \begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 2 \end{bmatrix}. \quad \text{Find a basis for } \operatorname{im}(A) \\ \\ \underbrace{Ans} & \text{Pat } A \text{ in } \text{REF} \\ \begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \\ \begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \\ \\ \text{Take the original } 1st, 3rd, 4th cols of A: \\ \\ A \text{ basis for } \operatorname{im}(A) \text{ is } \left\{ \begin{bmatrix} 1 & 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 2 \\ 2 \end{bmatrix} \right\}. \\ \\ \begin{aligned} Q : \operatorname{rank}(A)? \\ \\ \\ \dim(\operatorname{im}(A))? \end{bmatrix} \quad Ans \text{ is } 3 \end{aligned}$$

Lec 14 a (Basis Algo for the Kernel of a matrix) Q: Let A:= $\begin{bmatrix} 1 - 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 2 \end{bmatrix}$. Find a basis for ker(A). Ans Put A in REF 0 0 1 6 Write a general solution to A x = 0 Since 2nd col has no Leading 1, set X2=+/ $\begin{array}{c} \times_{1} - 2 \times_{2} = 0 \\ \times_{3} - 6 \times_{9} = 0 \\ \hline \times_{4} = 0 \end{array} \right) \xrightarrow{X_{1} - 2 + 0} \xrightarrow{X_{1} = 2 + 1} \\ \end{array}$ $Gen. \quad Sol : \qquad \begin{bmatrix} 2t \\ t \\ 0 \\ 0 \end{bmatrix} = t \begin{bmatrix} 2 \\ 1 \\ 0 \\ 0 \end{bmatrix}.$ A basis for $\ker(A)$ is $\begin{bmatrix} 2\\ 1\\ 8 \end{bmatrix}$

Lec 14b

Subspaces of IR whose dimension is easy to compute ·) [] { has dim D · If [] is not the zero vector, the subspace · If V is a subspace of IR4 with dim 4, then V must be the entire Rq. Q: Let $A := \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ • rank(A)? A is not the zero Kows of A are not 2 multiple of matrix · dim (im(A))? (same as rank(A) = 2) Kank-Nultity • dim (ker(A))? width(A) = rank(A) + dim (ker(A))2 2 2 must be 0. · Describe Ker (A). Ans [[0]], the zero subspace

Lec 15a

Def If A is an nxn matrix, an <u>eigenbasis</u> of A is a basis for \mathbb{R}^n consisting of eigenvectors of A.

$$\begin{aligned} & \mathcal{R}: \text{ Let } A:= \begin{bmatrix} 2 & 2 & 4 \\ 0 & 1 & -2 \\ 0 & 1 & 4 \end{bmatrix}. & \text{ Let } S:= \begin{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ -2 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}. \\ & \text{ Do } S \text{ form an eigenbasis for } A? \end{aligned}$$

the OCheck that the vectors in S are eigenvectors

$$\begin{bmatrix} 2 & 2 & 4 \\ 0 & 1 & -2 \\ 0 & 1 & 4 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix} = 2 \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \checkmark$$

$$A \begin{bmatrix} 0 \\ -2 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ -4 \\ -2 \end{bmatrix} = 2 \begin{bmatrix} -2 \\ -2 \\ 1 \end{bmatrix} \checkmark$$

$$A \begin{bmatrix} 2 \\ -1 \\ -3 \\ -1 \end{bmatrix} \checkmark$$

$$A \begin{bmatrix} 2 \\ -1 \\ -3 \\ -1 \end{bmatrix} \checkmark$$

$$A \begin{bmatrix} 2 \\ -1 \\ -3 \\ -1 \end{bmatrix} \checkmark$$

$$A \begin{bmatrix} 2 \\ -1 \\ -3 \\ -1 \end{bmatrix}$$

$$A \begin{bmatrix} 2 \\ -1 \\ -3 \\ -1 \end{bmatrix}$$

$$A \begin{bmatrix} 2 \\ -1 \\ -3 \\ -2 \end{bmatrix}$$

$$A \begin{bmatrix} 2 \\ -1 \\ -3 \\ -2 \end{bmatrix}$$

$$A \begin{bmatrix} 2 \\ -2 \\ -1 \\ -1 \end{bmatrix}$$

$$A \begin{bmatrix} 2 \\ -3 \\ -2 \\ -1 \end{bmatrix}$$

$$A \begin{bmatrix} 2 \\ -3 \\ -2 \\ -1 \end{bmatrix}$$

$$A \begin{bmatrix} 2 \\ -3 \\ -2 \\ -1 \end{bmatrix}$$

$$A \begin{bmatrix} 2 \\ -3 \\ -2 \\ -1 \end{bmatrix}$$

$$A \begin{bmatrix} 2 \\ -3 \\ -2 \\ -2 \end{bmatrix}$$

$$A \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \\ 0 & -2 & -1 \end{bmatrix}$$

$$A \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \\ 0 & -2 & -1 \end{bmatrix}$$

$$A \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \\ 0 & -2 & -1 \end{bmatrix}$$

$$A \begin{bmatrix} 1 & 0 & 2 \\ 0 & -2 & -1 \end{bmatrix}$$

$$A \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

$$A \begin{bmatrix} 1 & 0 & 2 \\ 0 & -2 & -1 \end{bmatrix}$$

$$A \begin{bmatrix} 1 & 0 & 2 \\ 0 & -2 & -1 \end{bmatrix}$$

$$A \begin{bmatrix} 1 & 0 & 2 \\ 0 & -2 & -1 \end{bmatrix}$$

$$A \begin{bmatrix} 1 & 0 & 2 \\ 0 & -2 & -1 \end{bmatrix}$$

$$A \begin{bmatrix} 1 & 0 & 2 \\ 0 & -2 & -1 \end{bmatrix}$$

$$A \begin{bmatrix} 1 & 0 & 2 \\ 0 & -2 & -1 \end{bmatrix}$$

$$A \begin{bmatrix} 1 & 0 & 2 \\ 0 & -2 & -1 \end{bmatrix}$$

$$A \begin{bmatrix} 1 & 0 & 2 \\ 0 & -2 & -1 \end{bmatrix}$$

$$A \begin{bmatrix} 1 & 0 & 2 \\ 0 & -2 & -1 \end{bmatrix}$$

$$A \begin{bmatrix} 1 & 0 & 2 \\ 0 & -2 & -1 \end{bmatrix}$$

$$A \begin{bmatrix} 1 & 0 & 2 \\ 0 & -2 & -1 \end{bmatrix}$$

$$A \begin{bmatrix} 1 & 0 & 2 \\ 0 & -2 & -1 \end{bmatrix}$$

$$A \begin{bmatrix} 1 & 0 & 2 \\ 0 & -2 & -1 \end{bmatrix}$$

$$A \begin{bmatrix} 1 & 0 & 2 \\ 0 & -2 & -1 \end{bmatrix}$$

$$A \begin{bmatrix} 1 & 0 & 2 \\ 0 & -2 & -1 \end{bmatrix}$$

$$A \begin{bmatrix} 1 & 0 & 2 \\ 0 & -2 & -1 \end{bmatrix}$$

$$A \begin{bmatrix} 1 & 0 & 2 \\ 0 & -2 & -1 \end{bmatrix}$$

$$A \begin{bmatrix} 1 & 0 & 2 \\ 0 & -2 & -1 \end{bmatrix}$$

$$A \begin{bmatrix} 1 & 0 & 2 \\ 0 & -2 & -1 \end{bmatrix}$$

$$A \begin{bmatrix} 1 & 0 & 2 \\ 0 & -2 & -1 \end{bmatrix}$$

$$A \begin{bmatrix} 1 & 0 & 2 \\ 0 & -2 & -1 \end{bmatrix}$$

$$A \begin{bmatrix} 1 & 0 & 2 \\ 0 & -2 & -1 \end{bmatrix}$$

$$A \begin{bmatrix} 1 & 0 & 2 \\ 0 & -2 & -1 \end{bmatrix}$$

$$A \begin{bmatrix} 1 & 0 & 2 \\ 0 & -2 & -1 \end{bmatrix}$$

$$A \begin{bmatrix} 1 & 0 & -2 \\ 0 & -2 & -1 \end{bmatrix}$$

$$A \begin{bmatrix} 1 & 0 & -2 \\ 0 & -2 & -1 \end{bmatrix}$$

$$A \begin{bmatrix} 1 & 0 & -2 \\ 0 & -2 & -1 \end{bmatrix}$$

$$A \begin{bmatrix} 1 & 0 & -2 \\ 0 & -2 & -1 \end{bmatrix}$$

$$A \begin{bmatrix} 1 & 0 & -2 \\ 0 & -2 & -1 \end{bmatrix}$$

$$A \begin{bmatrix} 1 & 0 & -2 \\ 0 & -2 & -1 \end{bmatrix}$$

$$A \begin{bmatrix} 1 & 0 & -2 \\ 0 & -2 & -1 \end{bmatrix}$$

$$A \begin{bmatrix} 1 & 0 & -2 \\ 0 & -2 & -1 \end{bmatrix}$$

$$A \begin{bmatrix} 1 & 0 & -2 \\ 0 & -2 & -1 \end{bmatrix}$$

$$A \begin{bmatrix} 1 & 0 & -2 \\ 0 & -2 & -2 \end{bmatrix}$$

$$A \begin{bmatrix} 1 & 0 & -2 \\ 0 & -2 & -2 \end{bmatrix}$$

$$A \begin{bmatrix} 1 & 0 & -2 \\ 0 & -2 & -2 \end{bmatrix}$$

$$A \begin{bmatrix} 1 & 0 & -2 \\ 0 & -2 & -2 \end{bmatrix}$$

$$A \begin{bmatrix} 1 & 0 & -2 \\ 0 & -2 & -2 \end{bmatrix}$$

$$A \begin{bmatrix} 1 & 0 & -2 \\ 0 & -2 & -2 \end{bmatrix}$$

$$A \begin{bmatrix} 1 & 0 & -2 \\ 0 & -2 & -2 \end{bmatrix}$$

$$A \begin{bmatrix} 1 & 0 & -2 \\ 0 & -2 & -2 \end{bmatrix}$$

$$A \begin{bmatrix} 1 & 0 & -2 \\ 0 & -2 & -2$$

Def/Fact A matrix M with an eigenbasis is diagonalizable, i.e. we can write $M = P D P^{-1}$ where $D = \begin{bmatrix} \lambda_{1} & \lambda_{1} \end{bmatrix}$ is a diagonal matrix $w_{1} \lambda_{1}, \dots, \lambda_{n}$ eigenvalues of A and P is a concatenation of the eigenbasis (the order has to match $\lambda_{1}, \dots, \lambda_{n}$).

$$\begin{array}{cccc} Q: & Let \ A = \begin{bmatrix} 3 & -1 & 2 \\ 0 & 2 & -2 \\ 0 & 0 & 1 \end{bmatrix}, & (computed \ an \ eigenbasis \ of \ f: \\ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 2 \\ 1 \\ 1 \end{bmatrix}, \\ \begin{bmatrix} 0 \\ 2 \\ 1 \\ 1 \end{bmatrix}, \\ \lambda_{1}=3 \ \lambda_{2}: 2 \ \lambda_{1}=1 \end{array}$$

· Write A¹⁰⁰ using this diagonalization.

Answer , Let
$$P := \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 1 \end{bmatrix}$$
. Then $A := P \begin{bmatrix} 3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix} P$.
• $A^{100} := (PDP^{T})^{100}$
 $= PDP^{T} PDP^{T} PDP^{T} ... PDP^{T}$
 $= P D^{100} P^{T}$
 $= P D^{100} P^{T}$
 $= P \begin{bmatrix} 3^{100} & 0 & 0 \\ 0 & 2^{100} & 0 \\ 0 & 0 & 1 \end{bmatrix} P^{T}$.
Q: Let $M := \begin{bmatrix} 1 & 3 & 7 & 0 \\ 3 & 0 & 6 & 0 \\ 7 & 6 & 2 & 0 \\ 0 & 0 & 5 \end{bmatrix}$. Does M have an eigenbasis?
Is M diagonalizable?
Ans Yes, by spectral Thm (since M is symmetric: $M^{T} = M$).

Lec 16

• Idea A vector space is a set V in which ... there is a rule to add any two elements in V
there is a rule to multiply any elt in V by a number and both operations "behave like" vector addition & vector scalar multiplication, Note: Every vector space has a "zero" element. · Examples of vector spaces - R' vectors of height n - P all polynomials in X - IPs all polynomials of degree at most 5 - C[∞] all smooth functions - Solutions to the differential equation f''=-f- Solutions to the differential equation f' = f- Any subspace of a vector space is itself a vector space (with respect to the same addition and scalar multip rule) Q: ls X3+5X a scalar multiple of X2+5? Answer is there a number c where $X^3 + 5X = C(X^2 + 5)^2$ No! Q: Write X^2 as a linear combination of $1+2X+X^2$, 1+X, and 1. Answer Find C1, C2, C3 so that $X^2 = C_1 (1+2x+x^2) + C_2 (1+x) + C_3 (1)$. Rewrite in standard form: $\chi^2 + (2C_1 + C_2) \times + (C_1 + C_2 + C_3)$ $\begin{array}{ccc} C_{1} & = & & \\ 2C_{1}+C_{2} & = & 0 \\ C_{1}+C_{2}+C_{3}= & 0 \end{array} \xrightarrow{} \begin{array}{ccc} C_{2} & = & \hline \\ C_{3} & = & -1+2 = & \\ \end{array}$

 $S_{0} X^{2} = \prod (1 + 2x + x^{2}) + [2](1 + x) + 1,$

Conf Lec 16

Examples of subsets of P that are not subspaces
- Set of polynomials of degree exactly 5
Why? The zero polynomial is not in this set
- Set of polynomials for where
$$f(-1) = 6$$
.
Why? The zero polynomial is not in this set

• Examples of subspaces of
$$C^{\infty}$$
 (hence examples of vector spaces)
- The set of solutions to $f'' = -f$