qb Let $A:=\left[\begin{array}{ll}1 & 2 \\ 4 & 5 \\ 7 & 8\end{array}\right]$
Domain of T_{A} ?
Target of T_{A} ?
Find a vector v so that $T_{A}(v)=\left[\begin{array}{l}3 \\ 6 \\ 9\end{array}\right]$
Use the fact that

$$
\left[\begin{array}{ll|l}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right] \xrightarrow[\text { Reduce }]{\text { Row }}\left[\begin{array}{cc|c}
1 & 0 & -1 \\
0 & 1 & 2 \\
0 & 0 & 0
\end{array}\right]
$$

10 b
Def saying that a function $\underset{(\text { domain })}{ }: \mathbb{R}^{n} \rightarrow \underset{(\text { target })}{\mathbb{R}^{m}}$ preserves addition means...

Which transformations are linear transformations?

$$
\begin{aligned}
& \square f\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)=\left[\begin{array}{c}
x^{2}+y \\
2 y
\end{array}\right] \\
& \square f\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)=\left[\begin{array}{c}
5 x+y \\
2 y \\
4 x
\end{array}\right] \\
& \square f\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)=\left[\begin{array}{c}
x+2 \\
y
\end{array}\right]
\end{aligned}
$$

- A rotation by 50° around the origin
I) A reflection with respect to the line $y=4 x$
- A projection onto the line $y=4 x$
(See Exercise 2 Lee lo a)
Suppose $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is a linear transformation
and $f\left(v_{1}\right)=\left[\begin{array}{c}3 \\ -2\end{array}\right], \quad f\left(v_{2}\right)=\left[\begin{array}{c}-3 \\ 4\end{array}\right]$
and $\quad v_{3}=3 v_{1}-2 v_{2}$
Compute $f\left(v_{3}\right)$
$10 b$
What are the standard basis vectors in \mathbb{R}^{3} ?

$$
e_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \quad e_{2}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], \quad e_{3}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] .
$$

Compute the matrix of the linear transformation

$$
f\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)=\left[\begin{array}{c}
5 x+y \\
2 y \\
4 x
\end{array}\right]
$$

11 a (Write these definitions on a cheat sheet)
Def We say a subset S of \mathbb{R}^{n} is closed under scalar multiplication if ...

Def
In this class, we defined a subspace V of \mathbb{R}^{n} to be...

If S is a subspace of \mathbb{R}^{4}, does S contain 001 ?

Def The image of an ${ }^{\# \text { rows }} \times \vec{n}$ matrix A is...

Let $A:=\left[\begin{array}{ll}1 & 2 \\ 4 & 5 \\ 7 & 8\end{array}\right]$

- Is $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ in $\operatorname{im}(A)$?
- Is $\left[\begin{array}{l}3 \\ 6 \\ 9\end{array}\right]$ in ii (A) ? Use the fact that $\left[\begin{array}{ll|l}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right] \xrightarrow[\text { Row }]{\text { reduce }}\left[\begin{array}{ll|l}1 & 0 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 0\end{array}\right]$
- Is $\left[\begin{array}{l}3 \\ 6 \\ 1\end{array}\right]$ in $\operatorname{im}(A)$? Use the fact that $\left[\begin{array}{llll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right] \xrightarrow[\text { Row }]{\text { Reduce }}\left[\begin{array}{ll|l}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$

$$
\text { - Is }\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \text { in imp }(A) \text { ? }
$$

