Midterm practice for
Math 3333 Linear Algebra Sources:

Lectures 1 to 8 and Lecture $9 a$ only

Perform row reduce step by step
Compute the rank of a matrix
Solving a linear system

- no solution
- exactly one solution
- solution set with 1 parameter, 2 parameters or more

Transpose of a matrix
scalar multiplication
matrix addition
matrix multiplication
Showing that matrix multiplication does not commute
Finding matrices which commute with other matrices of the same site Inverse of a matrix
Rearranging equations
Determining whether a matrix is invertible
-using rank
-using determinant

- knowing that if the matrix is not square then it's not invertible

Computing determinant
-using row reduce and upper triangular matrix
-using cofactor expansion
Computing eigenvectors
-Given a number λ, find eigenvectors or determine it doesn't exist Eigenvalues and eigenvectors (see Q10, Q11)

- Given the solution set of a matrix equation, determine whether a vector is an eigenvector \& whether a number is an eigenvalue

Geometric meaning of vector arithmetic in 2D

- scalar multiplication
- vector addition

Dimension and shape of a solution set (see Q3)
Performing sanity checks after computing a solution

Oo Walk me through the process of using
(1) augmented matrix and
(2) row reduce
to find all solutions to the linear system.

$$
\begin{array}{r}
x+y+z=3 \\
x+y+2 z=4 \\
y+2 z=2
\end{array}
$$

b. Write down a matrix multiplication which you can perform to verify your solution.

* Perform the matrix multiplication.

1) Key

$$
\begin{aligned}
& x+y+z=3 \\
& x+y+2 z=4 \\
& y+2 z=2 \\
& {\left[\begin{array}{lll|l}
1 & 1 & 1 & 3 \\
1 & 1 & 2 & 4 \\
0 & 1 & 2 & 2
\end{array}\right] R_{2} \mapsto-R_{2}\left[\begin{array}{ccc|c}
1 & 1 & 1 & 3 \\
-1 & -1 & -2 & -4 \\
0 & 1 & 2 & 2
\end{array}\right] R_{2} \mapsto R_{1}+R_{2}\left[\begin{array}{ccc|c}
1 & 1 & 1 & 3 \\
0 & 0 & -1 & -1 \\
0 & 1 & 2 & 2
\end{array}\right]}
\end{aligned}
$$

$$
\left.\begin{array}{rl}
x+y+z & =3 \\
-z & =-1 \\
y+2 z & =2
\end{array}\right\} \begin{array}{rlr}
x+0+1=3 \Rightarrow x=2 & & \\
y=1 & & \text { Solution: } \\
z=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
2 \\
0 \\
1
\end{array}\right]
\end{array}
$$

b. Write down a matrix multiplication which you can perform to verify your solution

$$
\text { * }\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 2 \\
0 & 1 & 2
\end{array}\right]\left[\begin{array}{l}
2 \\
0 \\
1
\end{array}\right]
$$

* Perform the matrix multiplication.

$$
\left[\begin{array}{l}
1.2+0+1 \\
1.2+0+2.1 \\
0+0+2.1
\end{array}\right]=\left[\begin{array}{l}
3 \\
4 \\
2
\end{array}\right]
$$

QL

Let $M=\left[\begin{array}{ccccc}1 & -2 & -1 & 3 & 1 \\ 2 & -4 & 1 & 0 & 5 \\ 1 & -2 & 2 & -3 & 4\end{array}\right]$
a) There are many REF matrices equivalent to M. Walk me through the process of finding one REF matrix equivalent to M.
b) Use this REF matrix to tell me the rank of M.
a) Key (Source: Lecture Ra, ab)

$$
\left.\begin{array}{rl}
M:= \\
{\left[\begin{array}{ccccc}
1 & -2 & -1 & 3 & 1 \\
2 & -4 & 1 & 0 & 5 \\
1 & -2 & 2 & -3 & 4
\end{array}\right]} & \longrightarrow\left[\begin{array}{ccccc}
1 & -2 & -1 & 3 & 1 \\
0 & 0 & 3 & -6 & 3 \\
1 & -2 & 2 & -3 & 4
\end{array}\right]
\end{array} \rightarrow \longrightarrow\left[\begin{array}{ccccc}
1 & -2 & -1 & 3 & 1 \\
0 & 0 & 3 & -6 & 3 \\
0 & 0 & 3 & -6 & 3
\end{array}\right]\right)
$$

b) The above REF matrix has two leading is, so $\operatorname{rank}(M)=2$.

Q 3

* Describe all solutions to the (consistent) system

$$
\left\{\begin{aligned}
a-2 b+d & =2 \\
c-2 d & =1
\end{aligned}\right.
$$

* How many parameters are needed to describe all solutions?
* What is the dimension of this solution set?
* What is the shape of this solution set?

Key
(Source: Lecture Ra)

Find all solutions to the system

$$
\left\{\begin{aligned}
a-2 b+d & =2 \\
c-2 d & =1
\end{aligned}\right.
$$

Think: $\left[\begin{array}{cccc|c}1 & -2 & 0 & 1 & 2 \\ 0 & 0 & 1 & -2 & 1\end{array}\right]$
The and \& 4 th columns have no leading is.
Let $b=t, d=s$
Then $c-2 d=1 \Rightarrow c-2 s=1 \Rightarrow c=1+2 s$

$$
a-2 b+d=2 \Rightarrow a-2 t+s=2 \Rightarrow a=2+2 t-s
$$

The solutions are

$$
\left[\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right]=\left[\begin{array}{r}
2+2 t-s \\
t \\
1+2 s \\
s
\end{array}\right]=\left[\begin{array}{l}
2 \\
0 \\
1 \\
0
\end{array}\right]+t\left[\begin{array}{l}
2 \\
1 \\
0 \\
0
\end{array}\right]+s\left[\begin{array}{c}
-1 \\
0 \\
2 \\
1
\end{array}\right] \begin{aligned}
& \text { for all } \\
& \begin{array}{l}
\text { numbers } \\
t \text { and } s .
\end{array}
\end{aligned}
$$

* Two parameters are needed to describe the solutions $\left.\begin{array}{l}\text { * The dimension is } 2 \\ \text { * The shape is a plane }\end{array}\right\}$

Q 4

- If $M=\left[\begin{array}{lll}5 & 2 & 6\end{array}\right]$,

What is M^{\top} ?

- What is the transpose of A^{T} ?

Key (Source: Lecture 39)

- If $M=\left[\begin{array}{lll}5 & 2 & 6\end{array}\right]$,

What is M^{\top} ?

$$
M^{\top}=\left[\begin{array}{l}
5 \\
2 \\
6
\end{array}\right]
$$

- What is the transpose of A^{\top} ?

$$
\left(A^{\top}\right)^{\top}=A
$$

What is the size of the product

$$
\left[\begin{array}{ccc}
1 & 2 & -1 \\
1 & 0 & 2
\end{array}\right]\left[\begin{array}{cc}
2 & 1 \\
-1 & 3 \\
0 & 1
\end{array}\right] ?
$$

What is the size of the product

$$
\left[\begin{array}{cc}
2 & 1 \\
-1 & 3 \\
0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 2 & -1 \\
1 & 0 & 2
\end{array}\right] ?
$$

What is the size of the product

$$
\left[\begin{array}{cccc}
1 & 2 & \pi & 5 \\
3 & 0 & 0 & 2 \\
0 & 9 & 1 & 4 \\
5 & 6 & 7 & 8 \\
9 & 10 & 11 & 12
\end{array}\right]\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right]
$$

What is the size of the product

$$
\left[\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
5 & 4 & 3 & 2 & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & 2 & \pi & 5 \\
3 & 0 & 0 & 2 \\
0 & 9 & 1 & 4 \\
5 & 6 & 7 & 8 \\
9 & 10 & 11 & 12
\end{array}\right]
$$

What is the size of the product

$$
\left.\begin{array}{lll}
{\left[\begin{array}{ccc}
1 & 2 & -1 \\
1 & 0 & 2
\end{array}\right]\left[\begin{array}{cc}
2 & 1 \\
-1 & 3 \\
0 & 1
\end{array}\right]}
\end{array}\right\}
$$

What is the size of the product

$$
\begin{array}{ll}
{\left[\begin{array}{cc}
2 & 1 \\
-1 & 3 \\
0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 2 & -1 \\
1 & 0 & 2
\end{array}\right]} & ? \\
3 \times 2 \text { Answer: } \\
3 \times 3 & 3 \times 3
\end{array}
$$

What is the size of the product

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
1 & 2 & \pi & 5 \\
3 & 0 & 0 & 2 \\
0 & 9 & 1 & 4 \\
5 & 6 & 7 & 8 \\
9 & 10 & 11 & 12
\end{array}\right]\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right] ?} \\
& 5 \times 4 \times 4 \times 1 \quad \text { Answer: } \\
& 5 \times 1
\end{aligned}
$$

What is the size of the product

$$
\begin{array}{ccccc}
{\left[\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
5 & 4 & 3 & 2 & 1
\end{array}\right]\left[\begin{array}{llll}
1 & 2 & \pi & 5 \\
3 & 0 & 0 & 2 \\
0 & 9 & 1 & 4 \\
5 & 6 & 7 & 8 \\
9 & 10 & 11 & 12
\end{array}\right]} & ? \\
& \text { Answer: } \\
2 \times 5 & 5 \times 4 & 2 \times 4
\end{array}
$$

- Give me one 2×2 matrix Which commutes with every 2×2 matrix
- Give me another 2×2 matrix Which commutes with every 2×2 matrix.
- How do you know it commutes with every 2×2 matrix?
- Is matrix multiplication commutative?
- Give me two (easy to remember) matrices which do not commute with each other.
- Give me one 2×2 matrix Which commutes with every 2×2 matrix
$\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ the identity matrix
commutes with every 2×2 matrix
- Give me another 2×2 matrix Which commutes with every 2×2 matrix.

$$
\begin{aligned}
& \text { From quiz 1: } \\
& \left.\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right] \text { works }
\end{aligned} \begin{cases}{\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right]\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=2\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=2\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{ll}
2 a & 2 b \\
2 c & 2 d
\end{array}\right]} \\
{\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left(2\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=2\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{ll}
2 a & 2 b \\
2 c & 2 d
\end{array}\right]\right.}\end{cases}
$$

- Is matrix multiplication commutative? No
- Give me two (easy to remember) matrices which do not commute with each other.
- If A has size 3×2 and B has size 2×3, $A B$ and $B A$ are defined but they have different sizes, so $A B \neq B A$

$$
\begin{aligned}
\text { - } A=\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right] \text { and } B=\left[\begin{array}{ll}
2 & 0 \\
0 & 1
\end{array}\right] \\
A B=\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right]\left[\begin{array}{ll}
0 & 3 \\
4 & 0
\end{array}\right]=\left[\begin{array}{ll}
0 & 3 \\
8 & 0
\end{array}\right] \\
B A=\left[\begin{array}{ll}
0 & 3 \\
4 & 0
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right]=\left[\begin{array}{ll}
0 & 6 \\
4 & 0
\end{array}\right]
\end{aligned}
$$

Ref: Matrix multiplication (Lecture 4a,4b and Quiz 1)

Q 7

- Suppose A, B, and C are 2×2 matrices and $\operatorname{det}(C)=5$.

Rewrite the matrix equation

$$
A C-B C=4 C B
$$

as a formula for A.

- What should you do to verify your answer?

Key
Similar to Exercise 3
Lecture 5 a

Suppose A, B, and C are 2×2 matrices and $\operatorname{det}(c)=5$.

Rewrite the matrix equation

$$
A C-B C=4 C B
$$

as a formula for A.

Answer o since $\operatorname{det}(c) \neq 0, \quad c^{-1}$ exists.

$$
\begin{aligned}
A C-B C & =4 C B \\
(A-B) C & =4 C B \\
(A-B) C C^{-1} & =4 C B C^{-1} \\
A-B & =4 C B C^{-1} \\
A & =4 C B C^{-1}+B
\end{aligned}
$$

- Sanity check

$$
\begin{array}{cl}
4 C B C^{-1}+B C-B C & \stackrel{!}{=} 4 C B \\
\left(4 C B C^{-1}+B\right) C-B C & \\
4 C B C^{-1} C+\underbrace{B C-B C}_{0} & =4 C B \Omega
\end{array}
$$

$$
\text { a) Let } M:=\left[\begin{array}{ccccccc}
1 & 0 & 0 & -1 & 9 & 8 & 0 \\
0 & 1 & 7 & 3 & -2 & 3 & 1 \\
0 & 0 & 1 & 5 & 7 & 2 & 4 \\
0 & 0 & 0 & 2 & 0 & 0 & 2 \\
0 & 0 & 0 & 0 & 5 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

Without performing the $[M \mid I d]$ algorithm,

$$
\left[\left.R E F\right|^{\xi}\right]
$$

determine whether M is invertible
b) The same question for

$$
C=\left[\begin{array}{ccccccc}
1 & 0 & 0 & -1 & 9 & 8 & 0 \\
0 & 1 & 7 & 3 & -2 & 3 & 1 \\
0 & 0 & 1 & 5 & 7 & 2 & 4 \\
0 & 0 & 0 & 2 & 0 & 0 & 2 \\
0 & 0 & 0 & 0 & 5 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0 & 0 & -1 & 1
\end{array}\right]
$$

Hint: For part (a), M is an upper triangular matrix,
so we can quickly compute $\operatorname{det}(M)$.
Do you remember how? (look at the diagonal entries)

Key
Similar to
Lecture 56
Exercise 9
a) $M==\left[\begin{array}{ccccccc}1 & 0 & 0 & -1 & 9 & 8 & 0 \\ 0 & 1 & 7 & 3 & -2 & 3 & 1 \\ 0 & 0 & 1 & 5 & 7 & 2 & 4 \\ 0 & 0 & 0 & 2 & 0 & 0 & 2 \\ 0 & 0 & 0 & 0 & 5 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1\end{array}\right] \quad$ is invertible

Why? $\operatorname{det}(M)=2.5=10 \neq 0$, and we know
if the determinant of a matrix is nonzero then the inverse of the matrix exists

- Alternatively, the rank of M is 7 and its size is 7×7, so M is invertible according to the invertibility-and-rank theorem
b) $C=\left[\begin{array}{ccccccc}1 & 0 & 0 & -1 & 9 & 8 & 0 \\ 0 & 1 & 7 & 3 & -2 & 3 & 1 \\ 0 & 0 & 1 & 5 & 7 & 2 & 4 \\ 0 & 0 & 0 & 2 & 0 & 0 & 2 \\ 0 & 0 & 0 & 0 & 5 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 & 0 & -1 & 1\end{array}\right]$

Why? C is equivalent to the 7×7 matrix which has determinant 0 and rank smaller than 7 .

$$
\left[\begin{array}{ccccccc}
1 & 0 & 0 & -1 & 9 & 8 & 0 \\
0 & 1 & 7 & 3 & -2 & 3 & 1 \\
0 & 0 & 1 & 5 & 7 & 2 & 4 \\
0 & 0 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 & \frac{1}{5} \\
0 & 0 & 0 & 0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] .
$$

Q 9

- Let $M:=\left[\begin{array}{ccccc}1 & -1 & 7 & 0 & 1 \\ 0 & 2 & 6 & 0 & 1 \\ 7 & 5 & -6 & 2 & 4 \\ 0 & 0 & -1 & 0 & 0 \\ 1 & -1 & 4 & 0 & 3\end{array}\right]$

Walk me through your process for computing $\operatorname{det}(M)$.

- Is M invertible?

Key
Source: Lecture $7 a$ Exercise 3

- A possible step-by-step process

For cofactor method, the most convenient choice is either the 4 th column or 4 th row.
Here, I choose the 4 th column

$$
\begin{aligned}
& \operatorname{det}\left[\begin{array}{ccccc}
1 & -1 & 7 & 0 & 1 \\
0 & 2 & 6 & 0 & 1 \\
7 & 5 & -6 & 2 & 4 \\
0 & 0 & -1 & 0 & 0 \\
1 & -1 & 4 & 0 & 3
\end{array}\right]=\underbrace{0 \cdot C_{14}}_{0}+\underbrace{0 \cdot C_{24}}_{0}+2 \cdot C_{34}+\underbrace{0 \cdot C_{44}}_{0}+\underbrace{0 \cdot C_{54}}_{0} \\
&=2 \cdot(-1)^{3+4} \\
& \operatorname{det}\left[\begin{array}{cccc}
1 & -1 & 7 & 1 \\
0 & 2 & 6 & 1 \\
0 & 0 & -1 & 0 \\
1 & -1 & 4 & 3
\end{array}\right]
\end{aligned}
$$

$$
R_{4} \mapsto-R_{1}+R_{4}
$$

$$
=2 \cdot(-1) \quad \operatorname{det}\left[\begin{array}{cccc}
1 & -1 & 7 & 1 \\
0 & 2 & 6 & 1 \\
0 & 0 & -1 & 0 \\
0 & 0 & -3 & 2
\end{array}\right]
$$ does not change the determinant

$$
=-2 \cdot \operatorname{det}\left[\begin{array}{cccc}
1 & -1 & 7 & 1 \\
0 & 2 & 6 & 1 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 2
\end{array}\right]
$$

$$
=-2 \quad 1.2 .-1.2
$$

$$
=8
$$

- Yes, M is invertible because $\operatorname{det}(M) \neq 0$.

Con't below \rightarrow
(for alternative
solution)

Key (Continued) Source: Lecture Ta

- A possible step-by-step process Exercise 3
For cofactor method, the most convenient choice is either the 4 th column or 4 th row.
Here, 1 choose the 4 th row.

$$
C_{43}=\underbrace{(-1)^{4+3}}_{-1} \operatorname{det}\left[\begin{array}{cccc}
1 & -1 & 0 & 1 \\
0 & 2 & 0 & 1 \\
7 & 5 & 2 & 4 \\
1 & -1 & 0 & 3
\end{array}\right]
$$

the original matrix without the 4th row, 3rd column

Cofactor along the 3 rd column

$$
\begin{aligned}
& \stackrel{\text { the }}{\text { column }}=-1 \cdot\left[0+0+2 \cdot(-1)^{3+3} \operatorname{det}\left[\begin{array}{ccc}
1 & -1 & 1 \\
0 & 2 & 1 \\
1 & -1 & 3
\end{array}\right]+0\right] \\
& =-1\left(2 \cdot \operatorname{det}\left[\begin{array}{ccc}
1 & -1 & 1 \\
0 & 2 & 1 \\
0 & 0 & 2
\end{array}\right]\right)=-1 \cdot 2 \cdot \underbrace{(1 \cdot 2 \cdot 2)}_{\begin{array}{l}
\text { diagonal entries }
\end{array}} \begin{array}{l}
\text { of an upper } \\
\text { triangular matrix }
\end{array} \\
& =-8
\end{aligned}
$$

So, $\begin{aligned} \operatorname{det}\left[\begin{array}{ccccc}1 & -1 & 7 & 0 & 1 \\ 0 & 2 & 6 & 0 & 1 \\ 7 & 5 & -6 & 2 & 4 \\ 0 & 0 & -1 & 0 & 0 \\ 1 & -1 & 4 & 0 & 3\end{array}\right] & =a_{41} c_{41}+a_{42} c_{42}+a_{43} c_{43}+a_{44} c_{44}+a_{45} c_{45} \\ & =0 \cdot c_{41}+0 . c_{42}+(-1) c_{43}+0 . c_{44}+0 . c_{45} \\ & =0+0+(-1)(-8)+0+0\end{aligned}$

$$
=8 \text { 五 }
$$

- Yes, M is invertible because $\operatorname{det}(M) \neq 0$.
- Find all eigenvectors of $A:=\left[\begin{array}{cc}4 & -2 \\ -2 & 1\end{array}\right]$ with eigenvalue O
- How can you check this by hand?
- If $M\left[\begin{array}{l}1 \\ 2\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$, does it mean $\left[\begin{array}{l}1 \\ 2\end{array}\right]$ is an eigenvector of M ?
- If $M\left[\begin{array}{l}1 \\ 2\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$, does it mean 0 is an eigenvalue of M ?
- If $M\left[\begin{array}{l}1 \\ 2\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$, does it mean $\left[\begin{array}{l}0 \\ 0\end{array}\right]$ is an eigenvector of M ?
- Suppose $B\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]=\left[\begin{array}{l}2 \\ 4 \\ 6\end{array}\right]$.

Give me one of the eigenvalues of the matrix B.

Key (Source: Lecture 7b Exercise 8)
Find all eigenvectors of $A:=\left[\begin{array}{cc}4 & -2 \\ -2 & 1\end{array}\right]$ with eigenvalue $\lambda=0$
Set $A v=0 v$

$$
\left[\begin{array}{cc}
4 & -2 \\
-2 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

$$
\left[\begin{array}{rr|r}
4 & -2 & 0 \\
-2 & 1 & 0
\end{array}\right]
$$

$$
R_{1} \mapsto \frac{1}{2} R_{1} \quad\left[\begin{array}{rr|r}
2 & -1 & 0 \\
-2 & 1 & 0
\end{array}\right]
$$

$$
\begin{array}{r}
R_{2} \mapsto R_{1}+R_{2} \quad\left[\begin{array}{cc|c}
2 & -1 & 0 \\
0 & 0 & 0
\end{array}\right] \\
\text { Let } y=t
\end{array}
$$

$$
2 x-y=0 \Rightarrow 2 x-t=0 \Rightarrow 2 x=t \Rightarrow x=\frac{1}{2} t
$$

The eigenvectors of A with eigenvalue $\lambda=0$ are of the form
$\binom{\frac{1}{2} t}{t}=t\binom{\frac{1}{2}}{1}$ for nonzero t.

- Check Compute $\left[\begin{array}{cc}4 & -2 \\ -2 & 1\end{array}\right]\left[\begin{array}{c}\frac{1}{2} t \\ t\end{array}\right]$. Is it equal to $0\left[\begin{array}{c}\frac{1}{2} t \\ t\end{array}\right]$?
- If $M\left[\begin{array}{l}1 \\ 2\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$, does it mean $\left[\begin{array}{l}1 \\ 2\end{array}\right]$ is an eigenvector of M ? Yes. This means $\left[\begin{array}{l}1 \\ 2\end{array}\right]$ is an eigenvector with eigenvalue 0
- If $M\left[\begin{array}{l}1 \\ 2\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$, does it mean 0 is an eigenvalue of M ? yes.
- If $M\left[\begin{array}{l}1 \\ 2\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$, does it mean $\left[\begin{array}{l}0 \\ 0\end{array}\right]$ is an eigenvector of M ?

No. Eigenvector cannot be a zero matrix.

- Suppose $B\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]=\left[\begin{array}{l}2 \\ 4 \\ 6\end{array}\right]$. Give me one the eigenvalues - $\lambda=2$ is an eigenvalue of B because

$$
B\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]=2\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]
$$

Q 11
Suppose M is a 4×4 matrix.
Suppose $(M-5$ Id $)\left(\begin{array}{l}x \\ y \\ z \\ w\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right) \quad$ has a unique solution.

- Is it enough information to determine whether 5 is an eigenvalue of M ? (If so, state whether 5 is an eigenvalue.) Explain.
- Is it enough information to determine whether -5 is an eigenvalue of M ? (If so, state whether -5 is an eigenvalue.) Explain.

Suppose $(M-5$ Id $)\left(\begin{array}{l}x \\ y \\ z \\ w\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right) \quad$ has infinitely many solutions.

- Is it enough information to determine whether 5 is an eigenvalue of M ? (If So, state whether 5 is an eigenvalue.) Explain.
- Is it enough information to determine whether -5 is an eigenvalue of M ? (If so, state whether -5 is an eigenvalue.) Explain.

Suppose M is a 4×4 matrix.
Suppose $(M-5$ Id $)\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right)$ has a unique solution. (exactly one)

- Is it enough information to determine whether 5 is an eigenvalue of M ? Yes. (If so, state whether 5 is an eigenvalue.)
This means the only $\left(\begin{array}{l}x \\ y \\ z \\ w\end{array}\right)$ satisfying $M\left(\begin{array}{l}x \\ y \\ z \\ w\end{array}\right)=5\left(\begin{array}{l}x \\ y \\ z \\ w\end{array}\right)$ is $\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right)$, So 5 is not an eigenvalue of M.
- Is it enough information to determine whether -5 is an eigenvalue of M ? (If so, state whether -5 is an eigenvalue.)
Not enough information about -5

Suppose $(M-5$ Id $)\left(\begin{array}{l}x \\ y \\ z \\ w\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right) \quad$ has infinitely mary

- Is it enough information to determine
whether 5 is an eigenvalue of M ? Yes.
(If so, state whether 5 is an eigenvalue.)
This means there are non-zero vectors $\left(\begin{array}{l}x \\ y \\ z \\ w\end{array}\right)$ satisfying $M\left(\begin{array}{l}x \\ y \\ z \\ w\end{array}\right)=5\left(\begin{array}{l}x \\ y \\ z \\ w\end{array}\right)$
So 5 is an eigenvalue of M.
- Is it enough information to determine whether -5 is an eigenvalue of M ? (If so, state whether -5 is an eigenvalue.) Not enough information about -5

* Use the annotate function to sketch $3 v$ and $\frac{1}{2} v$ if v is shown below

* On your paper, sketch $v+w$, where v and w are shown below

* Use the annotate function to sketch 3 V , if v is shown below

The length of $3 v$ is three times fol.

* On your paper, sketch $v+w$, where v and w are shown below

$v+w$ are drawn in dashed line

