Lecture 9b

Vector Geometry with matrices




Review: Vectors in 2D and 3D
[ Jele}

Review: Interpreting 2-vectors geometrically

We can visualize 2-vectors in the plane in two ways.

® |nterpret the entries as coordinates of a point.

[2] ...becomes... e (2’3)

3

® Draw an arrow from the origin to the above point.

[2] ...becomes... (2a3)

3

Confusingly, this arrow is often called a (geometric) vector.



Review: Vectors in 2D and 3D
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Review: Interpreting 3-vectors geometrically

We can do the same thing for 3-vectors.

® |nterpret the entries as coordinates of a point.

z

1
2 ...becomes... (1,2,3)
3

X

® Draw an arrow from the origin to the above point.

1
5 ...becomes... (1,2,3)
3

X

There is no standard for which variable corresponds to each axis.

|




Review: Vectors in 2D and 3D
[e]e] }

Review: scalar multipl and vector addition — geometry

From algebra to geometry

® Multiplying v by a scalar ¢ stretches c by a factor of c.

2v

® Adding v and w gives the new vector obtained by sliding the tail of
one vector to the tip of the other.
W

V + W




Linear transformations
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What about matrices?

Linear transformations: the idea

The geometric analog of a matrix isn't an object, but a
transformation that acts on vectors (or points).

This idea will be very useful even outside of geometric pictures.

Examples of linear transformations

® Rotations
® Reflections

® Projections

® Many more!




Linear transformations
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The linear transformation of a matrix ~ (Tefiniion)

Given a matrix A, the linear transformation of A is the function

Ta(v) = Av

—— .
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A\/ ust be o\&.{ :'\neoQ

v

» The input v of Tp is a vectoriwhose height must be width(A).
» The output of Tp is a vector, Av,whose height is height(A).
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Linear transformations
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Example

1 2
3 4

X 1 2] [x
()= A1)
B [ X 4 2y
— _3x—|—4y] for any x,y

The linear transformation of A := [ ] is defined by

Note that this function linear transformation T4 takes in a
2-vector and returns a 2-vector.



Linear transformations
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Exercise 2

1 2
Let A = [3 4] :
o cuse 7 ([2]). 7 ([1) o0 7 ([7])
—— -2 I
® Find a vector v such that Ta(v) = E :
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Exercise 2 .

1
Let A = E ‘21] ® Find a vector v such that Ta(v) = [1]

We want TA(V): [‘Il CFied v

Cide nste  In order —Qov TA (V) 4= make Qew&e)
Fhe product [L2]V  wiast be defried,
So —the height of v cheuld be width([12N)=2

Let v = B} We'l| seareh for x and y.

Ty (V)= [ ]{ (by defrmtion)
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O Find a vector v such that Ta(v ) = [1] O




Rotation

Many natural geometric transformations are linear.

Example

0

Let R := [1

—1 . .
0 ] Then the linear transformation is

w()) =1 o] bl=1Y]

Geometrically, this takes in a vector and rotates it 90°
counterclockwise.

B L v Rvr |
w \Z Tw ARu [7]




Projection
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Projections

The projection of a point v onto a line (or a plane) is the closest
point to v in that line (or a plane).

Example: Projection onto a line

Live L Line L-

Proj. onto line L
L g — >

Projections are useful in many applications because they give us
the closest approximation of v by points on a set.




Projection
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A formula for projection

If L is the line through the origin and the point w, then

We. Can Widle

. . VW s aS a
the projection of v onto L is woy
W - W mu\‘iifwfa‘fjonl

Exercise 3

Let L be the line in the plane R? through (0,0) and (1,3).

® Find a formula for the projection of v = |a b}T onto L.
(S [qJ

® Find a matrix M so that, for all points v, =1

20 Ty (v) is the projection of v onto L
[ _4
v
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Exercise 3
Let L be the line in the plane R? through (0,0) and (1, 3).

® Find a matrix M so that, for all points v,

Ty (v) is the projection of v onto L
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Translation
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Not every “natural” transformation on vectors is linear!

COVLST&@T e ‘L‘fdﬂg{ovmﬁhﬂ : TanglatTon
o —the c?s\/\t ‘DLA 1

w=(2,3) ”fL

>

{66

_Q(C"u")):( l 0)

n 0
afTOm \/:([)o)

(N=(9.0)
(0,9) JV



Translation
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Not every “natural” transformation on vectors is linear!

E xercise 4

Let _F be. e ‘FMV‘CA’(-OH Which Translates [?:( {>\3 (
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E xercise Lf

(@ Let £ be He Junction which transiates [5] by t.
G('\\/e. a {o‘rmulq —Q—o‘(‘ —F

peeser - 515D - [37])

@ Show —Fhat -F s :\g 2 linear transfetonation Ty
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- Use His +age as a template to ancewr
EX&FCASC’, L’- g.-‘mel lar %M&‘l’ reons \:’b&‘f‘

(@ Let £ be He Junckion which trensiates [$] by t.
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Translation
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As we saw, not every transformation on vectors is linear.

® \What special properties do linear transformations have?
® How can you tell if a transformation is linear?

® |f so, how can you write it as Ta for some matrix A?




