Lecture 8a

Characteristic Polynomials
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Review: If X\ is a number, find A-eigenvectors if they exist.

Recall: Eigenvectors and eigenvalues of a matrix

An eigenvector of an n X n matrix A is a non-zero vector v with
Av = \v

for some number )\, called the eigenvalue of the eigenvector v.

By definition, the zero vector is not an eigenvector.

Recall: Finding eigenvectors with a given eigenvalue

The A-eigenvectors of A are the non-zero solutions to the matrix
equation

(A=Xldv=0
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Review last lecture: Given a number A, try to find

A-eigenvectors.

Exercise 1

Find all 2-eigenvectors of
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0O 0 2

Find all 2-eigenvectors of
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Exercise 2

Find all 2-eigenvectors of
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Eigenvalues are rare and special
A matrix only has eigenvectors for a few eigenvalues (or none).

Eigenvalues of a matrix
The eigenvalues of a square matrix A are the numbers A\ for

which there exists a A-eigenvector.

Given a matrix A, how can we find the eigenvalues of A? That is,
given A and A, how can we (easily) tell if A-eigenvectors exist?
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Finding eigenvalues
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Observation 1

(A= Md)v =0
always has at least one solution, the zero vector (which doesn’t count
because eigenvectors are non-zero by definition).

(1)

So, A has a A-eigenvector if equation (1) has more than one solution.
So, A is an eigenvalue of A if equation (1) has more than one solution.

Since A is square, so is (A — Ald). Therefore,

(A= \d)v =0
has a unique solution precisely when (A — Ald) is invertible.
Recall: A square matrix is non-invertible iff its determinant is zero.

So, A is an eigenvalue of A if and only if det(A — A\ld) = 0.



Finding eigenvalues
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Exercise 3

Find the eigenvalues of the matrix

Al

5 1

by solving the equation det(A — xId) = 0.




Exercise 3

Find the eigenvalues of the matrix
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Characteristic polynomial
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Our main tool in the previous exercise is an important idea.

Definition: The characteristic polynomial of a square matrix

Given a n X n matrix A, the function of x

pa(x) ;= det(x Id — A)
is a polynomial of degree n, the characteristic polynomial of A.

Example of a characteristic polynomial
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Characteristic polynomial
@®0000

Our main tool in the previous exercise is an important idea.

Definition: The characteristic polynomial of a square matrix

Given a n X n matrix A, the function of x

pa(x) ;= det(x Id — A)
is a polynomial of degree n, the characteristic polynomial of A.

Example of a characteristic polynomial

02 -1
If C .= [— 30 } the characteristic polynomial of C is
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Characteristic polynomial
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Restate our criterion for eigenvalues (A is an eigenvalue of A iff
det(A — Ald) = 0) using the characteristic polynomial.

Finding eigenvalues of A
The eigenvalues of A are the roots of the char. poly. pa(x) of A.

Exercise 4(a)

Find the eigenvalues of the following matrix.
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Characteristic polynomial
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The characteristic polynomial of A = [ _111 _g ] IS

Cy () = det [x 14 —A)

et (22 -[4 2]
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The characteristic polynomial of A = [ _111 _g ] is

ca(x) = det(x Id — A)

= s[5 2[4 5

x—4 2
- det[ 1 X—3]
= (x—4)(x—3)—2
= x> —7x+10
= (x—2)(x—05).

So A has eigenvalues A1 = 2 and A\, = 5.
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Recall how to find eigenvectors

The A-eigenvectors v of A are the nonzero solutions to the matrix
equation (Al — A)v = 0.

Exercise 4(b)

Find all eigenvectors of A = [ _le _g ]
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To find the 2-eigenvectors of A, solve (2/d — A)v = 0:
—220_>1—10_>1—10><=3
1 —-1|0 —2 210 0 00
The eigenvectors with eigenvalue 2 are

t 1 .
[ ; ] =t [ 1 } where t is a nonzero number .
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To find the 2-eigenvectors of A, solve (2/d — A)v = 0:
—2 210 N 1 —-1]0 N 1 —-11]0 X=Y
1 —-110 -2 210 0 0|0
The eigenvectors with eigenvalue 2 are

t 1 .
[ ; ] =t [ 1 } where t is a nonzero number .

To find the 5-eigenvectors of A, solve (5/d — A)v = 0:

e G [ 210] 0 28]

The 5-eigenvectors of A are

5 1

—2s -2 )
=5 where s is a nhonzero number.




