Eigenvectors



Finding a fixed vector

Given a matrix A, can you find X such that

AX = X7?

That is, can you find a vector X which is sent to itself when
multiplied by A? Such a vector is called a fixed vector of A.

Exercise 6

2 0 0
A=11 2 -1
1 3 -2

Find all the vectors X such that AX = X.



Exercise 6
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Find all the vectors X such that AX = X.
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We can generalize this by including a scaling factor.

Exercise 7

2 0 O
A=11 2 -1
1 3 -2

® Find all the vectors X such that AX = 2x.
® Find all the vectors X such that AX = 3x.



Exercise 7
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@® Find all the vectors X such that AX = 2x.
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® Find all the vectors X such that AX = 3X.
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These questions lead to one of the fundamental ideas of this class.

Definition: Eigenvectors and eigenvalues
An eigenvector of a matrix A is a non-zero vector v such that
Av = )\v

for some number X\. The number X is called the eigenvalue of the
eigenvector v. [!"mbda)

We also refer to ‘an eigenvector with eigenvalue \' as a \-eigenvector.

Example (from Exercise 7)
20 0
H] is one of the many 2-eigenvectors of [} % _%]

20 0 _
but h % —ﬂ has no 3-eigenvector.

» The zero vector is not an eigenvector of any matrix by definition.
» An eigenvalue is a number which may be 0 or nonzero.

» If a matrix is not square, can it have eigenvectors?



Finding eigenvectors with a given eigenvalue

The eigenvectors of A with eigenvalue A\ are the non-zero solutions
to the homogeneous equation

(A= Ald)x=0

Exercise 8

4 -2
A [_2 : ]
a) Find all the eigenvectors of A with eigenvalue 0.
b) Find one eigenvector of A with eigenvalue 5.
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a=14 ]

a) Find all the eigenvectors of A with eigenvalue 0.

IR

O} lpidia 14 rmentedd

V"\ﬂ[+ ["T)(

2 -1
ko= RtR, | O 0

Let j:i—b
lx"ﬂ:p ;7 2% =t '—éxzét
ace. of Hhe {orm

An;wu The 0- e,TQs;r\\/ec{’o‘(‘S o-’; A

aRT ,
a1 o 1] ﬁifj M : O[/&j 4



@ Exercise 8
r= 15 5]

a) Find all the eigenvectors of A with eigenvalue 0.
b) Find one eigenvector of A with eigenvalue 5.
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Eigenvalues are rare and special

A matrix will only have eigenvectors for a few special eigenvalues.

How to find the As for which a A-eigenvector exist.

(I hope you like finding roots of polynomials.)



