Lecture 16b

Vector Spaces (subspaces)

Review

Last time: Almost every definition in this class can be defined using

(Recall) Definition 1: A vector space

A vector space is a set V in which

- there is a rule to add any two elements v, w in V, and
- there is a rule to multiply any v in V by any scalar r in \mathbb{R}, such that eight axioms hold.

Idea: a vector space is a set of objects that behave like a set of vectors. Examples of vector spaces:

- \mathbb{R}^{4} (the set of vectors of height 4)
- \mathbb{P} (the set of polynomials in x)
- \mathbb{P}_{2} (the set of polynomials of degree at most 2)
- \mathbb{S} (the set of sequences)
- $\mathbb{R}^{4 \times 5}$ (the set of 4×5 matrices)
- \mathcal{C}^{∞} (the set of smooth functions of x)

A direct proof that a set is a vector space is tedious because it requires eight proofs (one for each axiom).

$$
8 \text { is a lot? }
$$

There is one situation in which we don't have to check the axioms.

Making vector spaces out of bigger vector spaces

Let's say we already know V is a vector space.
Given a subset W of V, we can define addition and scalar multiplication in W by restricting the existing definitions in V.

- This only works if the sum of two elements in W is still in W, and the scalar multiple of an element in W is still in W !
- If this works, all eight axioms are free, because they hold in V !

Intuitively, W inherits the nice properties from V.

Example
Let's say we already know \mathbb{P} is a vector space, but not \mathbb{P}_{3}.

- To add two polynomials in \mathbb{P}_{3}, add them as polynomials in \mathbb{P}, and observe the result is still in \mathbb{P}_{3}.
- Scalar multiplication is defined the same way, and also does not leave \mathbb{P}_{3}.
Since the axioms hold in \mathbb{P}, they automatically hold in \mathbb{P}_{3}. So \mathbb{P}_{3} is a vector space.

A non-example:
Consider $S:=\{$ polynomials of degree exactly 3$\}$.
Then $x^{3}+x$ and $-x^{3}$ are in S, but their sum is not.
So S is not closed under addition.

We already have a name for this phenomenon; let's reuse it.
Defintion 4: Subspace of a vector space
Let V be a vector space. A subspace of V is a nonempty subset W of V which is...

1. closed under addition; that is, for all v, w in W, the sum $v+w$ is in W, and

2 - closed under scalar multiplication; that is, for all v in W and c in \mathbb{R}, the product $c v$ is in W.

Whenever this happens, we get the axioms for free. That is...
Fact 7 (Subspaces are vector spaces)
A subspace of a vector space is also a vector space.

- Many of the ideas (subspaces, bases, dimensions) from \mathbb{R}^{n} will generalize to other vector spaces.

Idea: Use Def 4 to either show that a non empty subset is a subspace (by checking properties (and 2) or
show that it's not a subspace (by coming up with a counter example)
Exercise 2
Let V be the set of polynomials with a factor of $(x+1)$; that is,

$$
V:=\{(x+1) f \mid f \text { in } \mathbb{P}\}
$$

Show that V is a subspace of \mathbb{P}.

Exercise 3
Let W be the set of sequences beginning with 1 ; that is,

$$
W:=\left\{\left(\mathbb{1}, x_{1}, x_{2}, x_{3}, \ldots\right) \mid x_{i} \text { in } \mathbb{R}\right\}
$$

Show that W is not a subspace of \mathbb{S}. the vector space of all sequences

Exercise 2 page $1 / 4$
Let V be the set of polynomials with a factor of $(x+1)$; that is,

$$
V:=\{(x+1) f \mid f \text { in } \mathbb{P}\}
$$

Show that V is a subspace of \mathbb{P}.
$\left[\begin{array}{ll}\text { We need to show that } & 0 . V \text { is non-empty } \\ \text { 1. } V \text { is closed under addition } \\ \text { 2. } V \text { is closed under multiplication. }\end{array}\right]$
0. Since $(x+1)$ is a polynomial with a factor of $(x+1)$,
$(x+1)$ is in V. So V is nonempty
[Alternatively, 1 could have checked that the zero element of \mathbb{P}] is in V to show that V is nonempty.
The zero element of \mathbb{P} is just the zero polynomial, 0. $0=(x+1) 0$, so the zero polynomial is in V.

1. Let P and q be in V. (This means $p=(x+1) f$ for some polynomial f,

Start w" Let Tetter and Tetter 2 be in the subset
$q=(x+1) g$ for some polynomial g.
We write down what it means for P and q to be in V.

Exercise 2 page $2 / 4$
Let V be the set of polynomials with a factor of $(x+1)$; that is,

$$
V:=\{(x+1) f \mid f \text { in } \mathbb{P}\}
$$

Show that V is a subspace of \mathbb{P}.
0. Since $(x+1)$ is a polynomial with a factor of $(x+1)$,
$(x+1)$ is in V. So V is non empty

1. Let p and q be in V. This means $p=(x+1) f$ for some polynomial f, $q=(x+1) g$ for some polynomial g.
[We need to show that $p+q$ is in V, ie, $p+q$ is a polynomial with a factor of $(x+1)$]

$$
\begin{aligned}
p+q & =(x+1) f+(x+1) g \\
& =(x+1)[f+g] \quad \text { This is }(x+1) \text { times }(\text { a polynomial })
\end{aligned}
$$

Therefore, $p+q$ is in V.
So V is closed under addition.

Exercise 2 page $3 / 4$
Let V be the set of polynomials with a factor of $(x+1)$; that is,

$$
V:=\{(x+1) f \mid f \text { in } \mathbb{P}\}
$$

Show that V is a subspace of \mathbb{P}.
0. Since $(x+1)$ is a polynomial with a factor of $(x+1)$, $(x+1)$ is in V. So V is nonempty

1. Let p and q be in V. This means $p=(x+1) f$ for some polynomial f, $q=(x+1) g$ for some polynomial g.

$$
\begin{aligned}
p+q & =(x+1) f+(x+1) g \\
& =(x+1)[f+g]
\end{aligned}
$$

Therefore, $p+q$ is in V. So V is closed under addition.
2. Let c be in \mathbb{R} and p in V. $\left[\begin{array}{l}\text { To show a subset is closed under scalar multiplication, } \\ \text { always start with "Let a letter be in } \mathbb{R} \text { and } \\ \text { let another letter be in the subset" }\end{array}\right]$

That is, $p=(x+1) f$ for some f in $\mathbb{P}[$ Write down what it means for p to be in $V]$ [we need to check that $c p$ is in V]

Then $c p=c(x+1) f$
$=(x+1)[c f] \quad \leftrightarrow$ Note: $c f$ is a polynomial
Therefore, $c p$ is in V. So V is closed under scalar multiplication.
Thus V is a subspace of \mathbb{P}.

- the end-

Exercise 2 page $4 / 4$
Let V be the set of polynomials with a factor of $(x+1)$; that is,
SAMPLE STUDENT ANSWER

$$
V:=\{(x+1) f \mid f \text { in } \mathbb{P}\}
$$

Show that V is a subspace of \mathbb{P}.
0. Since $(x+1)$ is a polynomial with a factor of $(x+1)$,
$(x+1)$ is in V. So V is non empty

1. Let p and q be in V. This means $p=(x+1) f$ for some polynomial f,

$$
\begin{aligned}
p+q & =(x+1) f+(x+1) g \\
& =(x+1)[f+g]
\end{aligned}
$$

Therefore, $p+q$ is in V. So V is closed under addition.
2. Let c be in \mathbb{R} and p in V.

That is, $p=(x+1) f$ for some f in \mathbb{P}.
Then $c p=c(x+1) f$

$$
=(x+1)[c f]
$$

Therefore, $c p$ is in V. So V is closed under scalar multiplication.
Thus V is a subspace of \mathbb{P}.

- the end-

Exercise 3 pg 1/2
Let W be the set of sequences beginning with 1 ; that is,

$$
W:=\left\{\left(1, x_{1}, x_{2}, x_{3}, \ldots .\right) \mid x_{i} \text { in } \mathbb{R}\right\}
$$

Show that W is not a subspace of \mathbb{S}.
We need to show that one of these properties
0. V is non-empty

1. V is closed under addition
2. V is closed under scalar multiplication.
fails by giving one concrete counterexample.
[see that W is non-empty, for example, the sequence $(1,1,1, \ldots)$ is in W,
so 1 should find either two sequences in W such that their sum is not in W or one number c and one sequence in W such that c times the sequence is not in W.

Possible answer 1:
Let $a=(1,1,1, \ldots)$ which is in W.
Then $a+a=(2,2,2, \ldots)$
Since the first term of $a+a$ is $2 \neq 1$, the sequence $a+a$ is not in w. So W is not closed under addition.
Therefore W is not a subspace of S.

Exercise 3
Let W be the set of sequences beginning with 1 ; that is,

$$
W:=\left\{\left(1, x_{1}, x_{2}, x_{3}, \ldots .\right) \mid x_{i} \text { in } \mathbb{R}\right\}
$$

Show that W is not a subspace of \mathbb{S}.
We need to show that one of these properties
0. V is non-empty

1. V is closed under addition
2. V is closed under scalar multiplication.
fails by giving one concrete counterexample.

Possible answer 2:
Let $a:=(1,1,1, \cdots)$ which is in W.
Then $5 a=(5,5,5, \ldots)$.
Since the first term of $5 a$ is $5 \neq 1$, the sequence $5 a$ is not in w.
So W is not closed under scalar multiplication.
Therefore W is not a subspace of S.

More examples of vector spaces constructed as subspaces

- Our favorite subspaces of \mathbb{R}^{n} :
- Images, spans, kernels, eigenspaces, and solutions to HSLEs.
\longrightarrow Each \mathbb{P}_{n} is a subspace of \mathbb{P}.
- The symmetric 3×3 matrices form a subspace of $\mathbb{R}^{3 \times 3}$.
- \mathbb{P} is a subspace of \mathcal{C}^{∞}.
\mathbb{P}_{n} is a subspace of \mathbb{P},
\mathbb{P} is a subspace of C^{∞}.

Recall:
\mathcal{C}^{∞} denotes the set of smooth functions in x

- \mathcal{C}^{∞} is a vector space

Exercise 4
Let S denote the set of smooth functions $f(x)$ in \mathcal{C}^{∞} such that $f^{\prime \prime}(x)=-f(x)$. That is,

$$
S=\left\{f(x) \text { in } \mathcal{C}^{\infty} \mid f^{\prime \prime}(x)=-f(x)\right\}
$$

Show that S is a subspace of \mathcal{C}^{∞}.
According to Definition 4, we need to show that ...
0. We can name a smooth function f in C^{∞} where $f^{\prime \prime}=-f$
I. S is closed under addition
2. S is closed under scalar multiplication.
$-\mathcal{C}^{\infty}$ denotes the set of smooth functions in x

- \mathcal{C}^{∞} is a vector space

Exercise 4 pg 1/4
Let S denote the set of smooth functions $f(x)$ in \mathcal{C}^{∞} such that $f^{\prime \prime}(x)=-f(x)$. That is,
S is the set of solutions to the differential

$$
S=\left\{f(x) \text { in } \mathcal{C}^{\infty} \mid f^{\prime \prime}(x)=f(x)\right\}
$$ equation $f^{\prime \prime}(x)=-f(x)$.

Show that S is a subspace of \mathcal{C}^{∞}.
0. Come up with just one solution to $f^{\prime \prime}=-f$.

- Recall $\sin (x)$ is smooth (all higher derivatives of $\sin (x)$ exists)

$$
\frac{d}{d x} \sin (x)=\cos (x), \quad \frac{d}{d x} \cos (x)=-\sin (x)
$$

so $\frac{d^{2}}{d x^{2}} \sin (x)=\frac{d}{d x} \cos (x)=-\sin (x)$
so $\sin (x)$ is in S

- The zero function also works: $\frac{d^{2}}{d x^{2}} 0=0=-0$

0. The function $\sin (x)$ is smooth (all derivatives of $\sin (x)$ exist), and $\frac{d^{2}}{d x^{2}} \sin (x)=\frac{d}{d x} \cos (x)=-\sin (x)$.
So S is non-empty.

- \mathcal{C}^{∞} denotes the set of smooth functions in x
- \mathcal{C}^{∞} is a vector space

Exercise 4
Let S denote the set of smooth functions $f(x)$ in \mathcal{C}^{∞} such that
S is the set of solutions to the differential $f^{\prime \prime}(x)=f(x)$. That is, equation $f^{\prime \prime}(x)=-f$.

Show that S is a subspace of \mathcal{C}^{∞}.
0. The function $\sin (x)$ is smooth (all derivatives of $\sin (x)$ exists), and $\frac{d^{2}}{d x^{2}} \sin (x)=\frac{d}{d x} \cos (x)=-\sin (x)$. So S is non-empty.
[1. To show S is closed under addition, write "let function 1 and function 2 be in S". Write down what it means for function and function 2 to be in S. Do computation which shows function + function 2 is also in S.

1. Let f and g be in S. That is, f and g are smooth and

$$
\begin{aligned}
& f^{\prime \prime}=-f \\
& g^{\prime \prime}=-g .
\end{aligned}
$$

Then $f+g$ is also smooth (since C^{∞} is a vector space, C^{∞} is closed under addition), and $\frac{d^{2}}{d x^{2}}(f+g)=\left(\frac{d^{2}}{d x^{2}} f\right)+\left(\frac{d^{2}}{d x^{2}} g\right)$

$$
\begin{aligned}
& =f^{\prime \prime}+g^{\prime \prime} \\
& =-f+-g \\
& =-(f+g)
\end{aligned}
$$

Therefore, $f+g$ is in S, so S is closed under addition.

- \mathcal{C}^{∞} denotes the set of smooth functions in x
- \mathcal{C}^{∞} is a vector space

Exercise 4
Let S denote the set of smooth functions $f(x)$ in \mathcal{C}^{∞} such that
S is the set of solutions to the differential $f^{\prime \prime}(x)=-f(x)$. That is, equation $f^{\prime \prime}(x)=-f$.

Show that S is a subspace of \mathcal{C}^{∞}.
2. To show S is closed under scalar multiplication, write "Let a lefter) be ir \mathbb{R} and let anotherf be in S ". Write down what it means for another to be in S letter Do computation showing $c f$ is still in S
2. Let c be in \mathbb{R} and let f be in S. That is, f is smooth and $f^{\prime \prime}=-f$.
Then $c f$ is smooth (because C^{∞} is a vector space, so C^{∞} is closed under scalar multiplication)

$$
\begin{aligned}
(c f)^{\prime \prime} & =c f^{\prime \prime} \\
& =c(-f) \\
& =-(c f)
\end{aligned}
$$

So CF is in S. Therefore S is closed under scalar multiplication. Hence S is a subspace of C^{∞}.

Exercise 4
 Pg 4/4

Let S denote the set of smooth functions $f(x)$ in \mathcal{C}^{∞} such that $f^{\prime \prime}(x)=f(x)$. That is,

$$
S=\left\{f(x) \text { in } \mathcal{C}^{\infty} \mid f^{\prime \prime}(x)=f(x)\right\} .
$$

Show that S is a subspace of \mathcal{C}^{∞}

SAMPLE STUDENT

ANSWER
0. The function $\sin (x)$ is smooth (all derivatives of $\sin (x)$ exists),

$$
\text { and } \frac{d^{2}}{d x^{2}} \sin (x)=\frac{d}{d x} \cos (x)=-\sin (x) \text {. So } S \text { is non-empty. }
$$

1. Let f and g be in S. That is, f and g are smooth and $f^{\prime \prime}=-f$
$g^{\prime \prime}=-g$
Then $f+g$ is also smooth (since C^{∞} is a vector space, C^{∞} is closed under addition), and $\frac{d^{2}}{d x^{2}}(f+g)=\left(\frac{d^{2}}{d x^{2}} f\right)+\left(\frac{d^{2}}{d x^{2}} g\right)$
$=f^{\prime \prime}+g^{\prime \prime}$
$=-f+-g$
$=-(f+g)$
Therefore, $f+g$ is in S, so S is closed under addition.
2. Let c be in \mathbb{R} and let f be in S.

That is, f is smooth and $f^{\prime \prime}=-f$
Then $c f$ is smooth (because C^{∞} is a vector space,

$$
\begin{aligned}
(c f)^{\prime \prime} & =c f^{\prime \prime} \\
& =c(-f) \\
& =-(c f)
\end{aligned}
$$

So $C F$ is in S. Therefore S is closed under scalar multiplication.
Hence S is a subspace of c^{∞}.

- the end

In the last exercise, we saw an example of the following theorem.

Theorem 8 (Differential equations and linear algebra)

The solutions to a linear differential equation form subspace of \mathcal{C}^{∞}
This allows us to use the techniques of linear algebra to study the vector space of solutions to a given linear differential equation. For example ...

Corollary

If $f_{1}, f_{2}, \ldots, f_{n}$ are solutions to a linear differential equation, then any linear combination

$$
c_{1} f_{1}+c_{2} f_{2}+\cdots+c_{n} f_{n}
$$

is also a solution.

Recall:

- \mathbb{P}_{2} denotes the set of polynomials $f(x)$ of degree at most 2 .
- \mathbb{P}_{2} is a vector space.

Exercise 5(a)

Let S denote the set of polynomials in \mathbb{P}_{2} such that $f(5)=0$. That is,

$$
S=\left\{f(x) \text { in } \mathbb{P}_{2} \mid f(5)=0\right\} .
$$

Show whether S is a subspace or not a subspace of \mathbb{P}_{2}.

Exercise 5(b)

Let T denote the set of polynomials in \mathbb{P}_{2} such that $f(5)=1$. That is,

$$
T=\left\{f(x) \text { in } \mathbb{P}_{2} \mid f(5)=1\right\} .
$$

Show whether T is a subspace or not a subspace of \mathbb{P}_{2}.
(Here, $f(5)$ means 'plug in 5 for x '.)

- \mathbb{P}_{2} denotes the set of polynomials $f(x)$ of degree at most 2 .
- \mathbb{P}_{2} is a vector space.

Exercise 5(a)
pg 1/3
Let S denote the set of polynomials in \mathbb{P}_{2} such that $f(5)=0$.
That is,

$$
S=\left\{f(x) \text { in } \mathbb{P}_{2} \mid f(5)=0\right\} .
$$

Show whether S is a subspace or not a subspace of \mathbb{P}_{2}.
Try to show that S is a subspace:
0. S is nonempty; 1.5 is closed under addition; 2. S is closed under scalar multiplication.
0. The polynomial $\times-5$ is in \mathbb{P}_{2} and plugging in 5 into $x-5$ gives 0 .
degree is $1 \leq 2$
So $x-5$ is in S. This shows S is non empty.

1. Let f and g be in s.

That is, f and g are polynomials with degree 2 or smaller, and

$$
\begin{aligned}
& f(5)=0 \\
& g(5)=0
\end{aligned}
$$

So $f+g$ is a polynomial with degree 2 or smaller, and

$$
\begin{aligned}
(f+g)(5) & =f(5)+g(5) \\
& =0+0 \\
& =0
\end{aligned}
$$

Therefore $f+g$ is in S. So S is closed under addition.

- \mathbb{P}_{2} denotes the set of polynomials $f(x)$ of degree at most 2 .
- \mathbb{P}_{2} is a vector space.

Exercise 5(a)
Pg 2/3
Let S denote the set of polynomials in \mathbb{P}_{2} such that $f(5)=0$.
That is,

$$
S=\left\{f(x) \text { in } \mathbb{P}_{2} \mid f(5)=0\right\} .
$$

Show whether S is a subspace or not a subspace of \mathbb{P}_{2}.
2. Let c be in \mathbb{R} and let f be in S.

That is, f is a polynomial in x with degree 2 or smaller, and

$$
f(5)=0
$$

Then cf is also in \mathbb{P}_{2} and

$$
\begin{aligned}
(c f)(5) & =c \cdot f(5) \\
& =c \cdot 0 \\
& =0
\end{aligned}
$$

So cf is in S. Therefore S is closed under scalar multiplication.
Thus, S is a subspace of \mathbb{P}_{2}.

- the end -
\mathbb{P}_{2} denotes the set of polynomials $f(x)$ of degree at most 2 .

Let S denote the set of polynomials in \mathbb{P}_{2} such that $f(5)=0$. That is,

$$
S=\left\{f(x) \text { in } \mathbb{P}_{2} \mid f(5)=0\right\} .
$$

Show whether S is a subspace or not a subspace of \mathbb{P}_{2}.

SAMPLE
STUDENT
ANSWER
0. The polynomial $x-5$ is in \mathbb{P}_{2} and plugging in 5 into $x-5$ gives 0 . degree is $1 \leq 2$
So $x-5$ is in S. This shows S is non empty.

1. Let f and g be in S.

That is, f and g are polynomials with degree 2 or smaller, and

$$
\begin{aligned}
& f(5)=0 \\
& g(5)=0 .
\end{aligned}
$$

So $f+g$ is a polynomial with degree 2 or smaller, and

$$
\begin{aligned}
(f+g)(5) & =f(5)+g(5) \\
& =0+0 \\
& =0
\end{aligned}
$$

Therefore $f+g$ is in S. So S is closed under addition.
2. Let c be in \mathbb{R} and let f be in S.

That is, f is a polynomial in x with degree 2 or smaller, and $f(5)=0$.

Then $c f$ is also in \mathbb{P}_{2} and

$$
\begin{aligned}
(c f)(5) & =c \cdot f(5) \\
& =c \cdot 0 \\
& =0
\end{aligned}
$$

So cf is in S. Therefore S is closed under scalar multiplication.
Thus, S is a subspace of \mathbb{P}_{2}.

- the end -

Let T denote the set of polynomials in \mathbb{P}_{2} such that $f(5)=1$.
That is,

$$
T=\left\{f(x) \text { in } \mathbb{P}_{2} \mid f(5)=1\right\}
$$

Show whether T is a subspace or not a subspace of \mathbb{P}_{2}.
My Scratch work (Dort submit your scratch work!)
Try to show T is a subspace: $0 . T$ is nonempty

1. T is closed under addition
2. T is closed under scalar multiplication
$x-4$ is in \mathbb{P}_{2} and plugging in 5 into $x-4$ gives 1 , so T is nonempty.
But if 1 have two polynomials f, g in T, then $(f+g)(5)=f(5)+g(5)=1+1=2$.

Let $f(x):=x-4$, which is in T.
Then $(f+f)(x)=x-4+x-4$

$$
=2 x-8
$$

so $(f+f)(5)=2(5)-8$

$$
=2
$$

Since $(f+f)(s) \neq 1, f+f$ is not in T.
So T is not closed under addition. Therefore T is not a subspace of \mathbb{P}_{2}.

Let T denote the set of polynomials in \mathbb{P}_{2} such that $f(5)=1$.
That is,

$$
T=\left\{f(x) \text { in } \mathbb{P}_{2} \mid f(5)=1\right\}
$$

Show whether T is a subspace or not a subspace of \mathbb{P}_{2}.

SAMPLE STUDENT ANSWER

Let $f(x):=x-4$, which is in T.
Then $(f+f)(x)=x-4+x-4$

$$
=2 x-8
$$

so $(f+f)(5)=2(5)-8$

$$
=2
$$

Since $(f+f)(5) \neq 1, f+f$ is not in T.
So T is not closed under addition.
Therefore T is not a subspace of \mathbb{P}_{2}.

- the end -

ANOTHER SAMPLE STUDENT ANSWER
Let $f(x):=x-4$, which is in T.
Then $(4 f)(x)=4(x-4)$

$$
=4 x-16 .
$$

So $(4 f)(5)=20-16$

$$
=4
$$

Since $(4 f)(5) \neq 1$,
$4 f$ is not in T.
So T is not closed under scalar multiplication. Therefore T is not a subspace of \mathbb{P}_{2}. - the end -

