Lecture 16b

Vector Spaces (subspaces)

Review

Last time: Almost every definition in this class can be defined using addition + scalar multiplication

(Recall) Definition 1: A vector space

A vector space is a set V in which

- there is a rule to add any two elements v, w in V, and
- there is a rule to multiply any v in V by any scalar r in \mathbb{R} ,

such that eight axioms hold.

Idea: a vector space is a set of objects that behave like a set of vectors. Examples of vector spaces:

Slide 2/10

- \mathbb{R}^4 (the set of vectors of height 4)
- \mathbb{P} (the set of polynomials in x)
- P2 (the set of polynomials of degree at most 2)
- S (the set of sequences)
- $\mathbb{R}^{4 \times 5}$ (the set of 4 × 5 matrices)
- C^{∞} (the set of smooth functions of *x*)

A direct proof that a set is a vector space is tedious because it requires eight proofs (one for each axiom).

8 is a lot!

There is one situation in which we don't have to check the axioms.

Making vector spaces out of bigger vector spaces

Let's say we already know V is a vector space. Given a subset W of V, we can define addition and scalar multiplication in W by restricting the existing definitions in V.

- This only works if the sum of two elements in *W* is still in *W*, and the scalar multiple of an element in *W* is still in *W*!
- If this works, all eight axioms are free, because they hold in *V*!

Intuitively, W inherits the nice properties from V.

Slide 3/10

Example

Let's say we already know \mathbb{P} is a vector space, but not \mathbb{P}_3 .

- To add two polynomials in \mathbb{P}_3 , add them as polynomials in \mathbb{P} , and observe the result is still in \mathbb{P}_3 .
- Scalar multiplication is defined the same way, and also does not leave P₃.

Since the axioms hold in \mathbb{P} , they automatically hold in $\mathbb{P}_{\mathbf{s}}$. So $\mathbb{P}_{\mathbf{s}}$ is a vector space.

A non-example: Consider $S := \{ \text{ polynomials of degree exactly } 3 \}$. Then $X^3 + X$ and $-X^3$ are in S, but their sum is not. So S is not closed under addition. Slide 4/10 We already have a name for this phenomenon; let's reuse it.

Definition 4: Subspace of a vector space

Let V be a vector space. A **subspace** of V is a <u>non-empty</u> subset W of V which is...

Lo closed under addition; that is,

for all v, w in W, the sum v + w is in W, and

² • closed under scalar multiplication; that is,

for all v in W and c in \mathbb{R} , the product cv is in W.

Whenever this happens, we get the axioms for free. That is...

Fact 7 (Subspaces are vector spaces)

A subspace of a vector space is also a vector space.

Many of the ideas (subspaces, bases, dimensions) from IRⁿ
 will generalize to other vector spaces.
 Slide 5/10

dea: Use Def 4 to either show that a non-empty subset is a subspace
(by checking properties (and 2) or
show that it's not a subspace (by coming up with a counter example)
Exercise 2
Let V be the set of polynomials with a factor of
$$(x + 1)$$
; that is,
 $V := \{(x + 1)f \mid f \text{ in } \mathbb{P}\}$
Show that V is a subspace of \mathbb{P} .

Exercise 3

Let W be the set of sequences beginning with 1; that is,

$$\mathcal{N} := \{ (1, x_1, x_2, x_3, \ldots) \mid x_i \text{ in } \mathbb{R} \}$$

Show that W is not a subspace of S. the vector space of all sequences

Slide 6/10

Exercise 2 Page 1/4

Let V be the set of polynomials with a factor of (x + 1); that is, $V := \{(x + 1)f \mid f \text{ in } \mathbb{P}\}$

Show that V is a subspace of \mathbb{P} .

We need to show that 0. V is non-empty
1. V is closed under addition
2. V is closed under multiplication.]
0. Since (Xti) is a polynomial with a factor of (Xti),
(Xti) is in V. So V is non empty
(Alternatively, I could have checked that the zero element of IP
is in V to show that V is non empty.
The zero element of IP is just the zero polynomial, 0.

$$0 = (Xti)0$$
, so the zero polynomial is in V.
I. Let p and q be in V. (This means $p = (Xti)f$ for some polynomial f,
start w "Let letter] and
(etter 2) be in (The subset)"
We write down what it means fr
p and q to be in V.

Exercise 2 Page 2/4

Let V be the set of polynomials with a factor of (x + 1); that is, $V := \{(x + 1)f \mid f \text{ in } \mathbb{P}\}$

Show that V is a subspace of \mathbb{P} .

Exercise 2 P^{oge} 3/4

Let V be the set of polynomials with a factor of (x + 1); that is, $V := \{(x + 1)f \mid f \text{ in } \mathbb{P}\}$

Show that V is a subspace of \mathbb{P} .

N. Since (Xti) is a polynomial with a factor of (Xti),
(Xti) is in V. So V is nonempty
1. Let p and q be in V. This means p=(Xti) f for some polynomial f,
ptq = (Xti)f + (Xti)g
q = (Xti) g for some polynomial g.
= (Xti) [ftq]
Therefore, ptq is in V. So V is closed under addition.

2. Let c be in R and p in V. [To show a subset is closed under scalar multiplication, always start with "Let a letter be in IR and let another letter be in the subset"] That is, p = (Xti) f for some f in P [Write down what it means for p to be in V] [We need to check that cp is in V]

Then Cp = C(xti)f= (xti) [Cf] (Note: cf is a polynomial Therefore, cp is in V. So V is closed under scalar multiplication. Thus V is a subspace of P.

—the end—

Exercise 2 P^{ege} 4/4

Let V be the set of polynomials with a factor of (x + 1); that is, $V := \{ (x+1)f \mid f \text{ in } \mathbb{P} \}$ Show that V is a subspace of \mathbb{P} . D. Since (X+1) is a polynomial with a factor of (X+1), (X+1) is in V. So V is nonempty 1. Let p and q be in V. This means p = (X+i)f for some polynomial f, q=(x+i) g for some polynomial q. P+q = (x+i)f + (x+i)g= (x+i) [f+g]Therefore, ptq is in V. So V is closed under addition. 2. Let c be in IR and p in V. That is, p=(X+1)f for some f in P. Then CP = C (X+1)f = (X+1) [cf] Therefore, cp is in V. So V is closed under scalar multiplication. Thus V is a subspace of P. - the end-

SAMPLE STUDENT ANSWER

Exercise 3 pg 1/2-Let W be the set of sequences beginning with 1; that is, $W := \{(1, x_1, x_2, x_3, ...) | x_i \text{ in } \mathbb{R}\}$ Show that W is <u>not</u> a subspace of S. [U)a need to show that ψ is <u>not</u> a subspace of S.

7

Possible answer 1:
Let
$$a = (1,1,1,...)$$
 which is in W.
Then $a + a = (2,2,2,...)$
Since the first term of $a + a$ is $2 \neq 1$, the sequence $a + a$ is not in W.
So W is not closed under addition.
Therefore W is not a subspace of S.

Exercise 3 Pg 2/2 Let W be the set of sequences beginning with 1; that is, $W := \{(1, x_1, x_2, x_3, ...) | x_i \text{ in } \mathbb{R}\}$ Show that W is not a subspace of \mathbb{S} . We need to show that one of these properties ". V is non-empty 1. V is closed under addition 2. V is closed under scalar multiplication. fails by giving one concrete counterexample. Possible answer 2: Let a= (1,1,1,...) which is in W. Then 5a=(5,5,...). Since the first term of 5a is $5 \neq 1$, the sequence 5a is not in W. So W is not closed under scalar multiplication. Therefore W is not a subspace of S.

- Our favorite subspaces of \mathbb{R}^n :
 - Images, spans, kernels, eigenspaces, and solutions to HSLEs.
- \frown Each \mathbb{P}_n is a subspace of \mathbb{P} .
 - The symmetric 3×3 matrices form a subspace of $\mathbb{R}^{3 \times 3}$.
 - \triangleright \mathbb{P} is a subspace of \mathcal{C}^{∞} .

Slide 7/10

Recall:

- \mathcal{C}^{∞} denotes the set of smooth functions in *x*
- \blacktriangleright \mathcal{C}^{∞} is a vector space

Exercise 4

Let S denote the set of smooth functions f(x) in \mathcal{C}^{∞} such that f''(x) = f(x). That is,

$$S = \{f(x) \text{ in } \mathcal{C}^{\infty} \mid f''(x) = f(x)\}.$$

Show that S is a subspace of \mathcal{C}^{∞} .

According to Definition 4, we need to show that ...

0. We can name a smooth function f in C^{∞} where f''=-f1. S is closed under addition 2. S is closed under scalar multiplication.

Slide 8/10

- \mathcal{C}^{∞} denotes the set of smooth functions in *x*
- $\blacktriangleright \ \mathcal{C}^{\infty}$ is a vector space

Exercise 4 **†**g 1/4

Let S denote the set of smooth functions f(x) in C^{∞} such that f''(x) = f(x). That is,

$$S = \{f(x) \text{ in } \mathcal{C}^{\infty} \mid f''(x) = f(x)\}.$$

S is the set of colutions to the differential
equation
$$f''(x) = -f(x)$$
.

Show that S is a subspace of \mathcal{C}^{∞} .

D. Come up with just one solution to
$$f'' = -f$$
.
• Recall $\sin(x)$ is smooth (all higher derivatives of $\sin(x) = xists$)
 $\frac{1}{dx} \sin(x) = \cos(x)$, $\frac{1}{dx} \cos(x) = -\sin(x)$,
so $\frac{1^2}{dx^2} \sin(x) = \frac{1}{d} \cos(x) = -\sin(x)$
so $\sin(x)$ is in S
• The zero function also works: $\frac{1}{dx^2} = 0 = -0$
D. The function $\sin(x)$ is smooth (all derivatives of $\sin(x) = xist$),

and
$$\frac{d^2}{dx^2} \sin(x) = \frac{d}{dx} \cos(x) = -\sin(x)$$
.
So S is non-empty.

- C^{∞} denotes the set of smooth functions in x
- $\blacktriangleright \ \mathcal{C}^{\infty}$ is a vector space

Exercise 4 P9 2/4 Let S denote the set of smooth functions f(x) in C^{∞} such that f''(x) = f(x). That is, $S = \{f(x) \text{ in } C^{\infty} | (f''(x) = f(x))\}.$ S is the set of colutions to the differential equation f''(x) = -f.

Show that S is a subspace of \mathcal{C}^{∞} .

D. The function
$$\sin(x)$$
 is smooth (all derivatives of $\sin(x) \exp(x)$);
and $\frac{d^2}{dx^2} \sin(x) = \frac{d}{dx} \cos(x) = -\sin(x)$. So S is non-empty.
I. To show S is closed under addition, write "let function 1) and function 2) be in S.
Write down what it means for function1) and function 2 to be in S.
Do computation which shows function1 + function 2 is also in S.
I. Let f and g be in S. That is, f and g are smooth and
 $f'' = -f$
 $g'' = -g$.
Then f+g is also smooth (since C[∞] is a vector space, C[∞] is closed under addition),
and $\frac{d^2}{dx^2} (f+g) = (\frac{d^2}{dx^2} f) + (\frac{d^2}{dx^2} g)$
 $= f'' + g'' = -f + -g$
 $= -f + -g$

Therefore, ftg is in S, so S is closed under addition.

- C^{∞} denotes the set of smooth functions in *x*
- $\blacktriangleright \ \mathcal{C}^\infty$ is a vector space

Exercise 4 $pg^{-3}/4$ Let S denote the set of smooth functions f(x) in C^{∞} such that f''(x) = f(x). That is, $S = \{f(x) \text{ in } C^{\infty} | (f''(x) = f(x))\}.$ S is the set of solutions to the differential equation f''(x) = -f.

Show that S is a subspace of \mathcal{C}^{∞} .

2. Let c be in
$$\mathbb{R}$$
 and let f be in S.
That is, f is smooth and $f''=-f$.
Then cf is smooth (because C^{∞} is a vector space,
so C^{∞} is closed under scalar multiplication)
(cf)'' = c f''
= c (cf)
So cf is in S. Therefore S is closed under scalar multiplication.
Hence S is a subspace of C^{∞}
- the end

- C^{∞} denotes the set of smooth functions in x
- $\blacktriangleright \ \mathcal{C}^\infty$ is a vector space

Exercise 4 Pg 4/4

Let S denote the set of smooth functions f(x) in C^{∞} such that f''(x) = f(x). That is,

$$S = \{f(x) \text{ in } \mathcal{C}^{\infty} \mid f''(x) = f(x)\}.$$

Show that S is a subspace of \mathcal{C}^{∞} .

SAMPLE STUDENT ANSWER

D. The function
$$\sin(x)$$
 is smooth (all derivatives of $\sin(x)$ exists),
and $\frac{d^2}{dx^2}\sin(x) = \frac{d}{dx}\cos(x) = -\sin(x)$. So S is non-empty.

1. Let f and g be in S. That is, f and g are smooth and

$$f'' = -f$$

 $g'' = -g$.
Then f+g is also smooth (since C° is a vector space, C° is closed under addition),
and $\frac{d^2}{dx^2}(f+g) = (\frac{d^2}{dx}f) + (\frac{d^2}{dx}g)$
 $= f'' + g''$
 $= -f + -g$
 $= -(f+g)$.
Therefore, f+g is in S, so S is closed under addition.
2. Let C be in R and let f be in S.
That is, f is smooth and $f'' = -f$.
Then CF is smooth (because C° is a vector space,
so C° is closed under scalar multiplication)
(cf)'' = C f''
 $= -(Cf)$.
So CF is in S. Therefore S is closed under scalar multiplication.
Hence S is a subspace of C°.
 $-$ the end

In the last exercise, we saw an example of the following theorem.

Theorem 8 (Differential equations and linear algebra)

The solutions to a linear differential equation form subspace of \mathcal{C}^∞

This allows us to use the techniques of linear algebra to study the vector space of solutions to a given linear differential equation. For example ...

Corollary

If $f_1, f_2, ..., f_n$ are solutions to a linear differential equation, then any linear combination

$$c_1f_1+c_2f_2+\cdots+c_nf_n$$

is also a solution.

Slide 9/10

Recall:

- ▶ \mathbb{P}_2 denotes the set of polynomials f(x) of degree at most 2.
- ▶ P₂ is a vector space.

Exercise 5(a)

Let S denote the set of polynomials in \mathbb{P}_2 such that f(5) = 0. That is,

$$S = \{f(x) \text{ in } \mathbb{P}_2 \mid f(5) = 0\}.$$

Show whether S is a subspace or not a subspace of \mathbb{P}_2 .

Exercise 5(b)

Let T denote the set of polynomials in \mathbb{P}_2 such that f(5) = 1. That is,

$$T = \{f(x) \text{ in } \mathbb{P}_2 \mid f(5) = 1\}.$$

Show whether T is a subspace or not a subspace of \mathbb{P}_2 .

(Here, f(5) means 'plug in 5 for x'.)

Slide 10/10

- ▶ \mathbb{P}_2 denotes the set of polynomials f(x) of degree at most 2.
- \blacktriangleright \mathbb{P}_2 is a vector space.

Exercise 5(a) P9 1/3

Let S denote the set of polynomials in \mathbb{P}_2 such that f(5) = 0. That is,

 $S = \{f(x) \text{ in } \mathbb{P}_2 \mid f(5) = 0\}.$

Show whether S is a subspace or not a subspace of \mathbb{P}_2 .

Try to show that S is a subspace:
10. S is non-empty; I.S is closed under addition; 2. S is closed under scalar multiplication.
10. The polynomial X-5 is in
$$H_2$$
 and plugging in 5 into X-5 gives 0.
degree is $1 \le 2$
So X-5 is in S. This shows S is nonempty.
1. Let f and g be in S.
That is, f and g are polynomials with degree 2 or smaller, and
 $f(5)=0$
 $g(5)=0$.
So f+g is a polynomial with degree 2 or smaller, and
 $(f+g)(5) = f(5) + g(5)$
 $= 0 + 0$
Therefore f+g is in S. So S is closed under addition.
Looks
promising!

- ▶ \mathbb{P}_2 denotes the set of polynomials f(x) of degree at most 2.
- \blacktriangleright \mathbb{P}_2 is a vector space.

Exercise 5(a) P0 2/3

Let S denote the set of polynomials in \mathbb{P}_2 such that f(5) = 0. That is,

 $S = \{f(x) \text{ in } \mathbb{P}_2 \mid f(5) = 0\}.$

Show whether S is a subspace or not a subspace of \mathbb{P}_2 .

P₂ denotes the set of polynomials f(x) of degree at most 2.

P₂ is a vector space.

Exercise 5(a) P? 3/3Let S denote the set of polynomials in \mathbb{P}_2 such that f(5) = 0. That is,

$$S = \{f(x) \text{ in } \mathbb{P}_2 \mid f(5) = 0\}.$$

Show whether S is a subspace or not a subspace of \mathbb{P}_2 .

SAMPLE STUDENT ANSWER

Exercise 5(b) Pg 1/2

Let T denote the set of polynomials in \mathbb{P}_2 such that f(5) = 1. That is,

 $T = \{f(x) \text{ in } \mathbb{P}_2 \mid f(5) = 1\}.$

Show whether T is a subspace or not a subspace of \mathbb{P}_2 .

Let
$$f(x) := x-4$$
, which is in T.
Then $(f+f)(x) = x-4 + x-4$
 $= 2x-8$
so $(f+f)(s) = 2(s)-8$
 $= 2$
Since $(f+f)(s) \neq 1$, $f+f$ is not in T.
So T is not closed under addition. Therefore T is not a subspace of \mathbb{P}_2 .

Exercise 5(b) pg 2/2

Let $\mathcal T$ denote the set of polynomials in $\mathbb P_2$ such that f(5)=1. That is,

 $T = \{f(x) \text{ in } \mathbb{P}_2 \mid f(5) = 1\}.$

Show whether T is a subspace or not a subspace of \mathbb{P}_2 .

SAMPLE STUDENT ANSWER

Let
$$f(x) := x-4$$
, which is in T.
Then $(f+f)(x) = x-4 + x-4$
 $= 2x-8$
so $(f+f)(s) = 2(s)-8$
 $= 2$
Since $(f+f)(s) \neq 1$, f+f is not in T.
So T is not closed under addition.
Therefore T is not a subspace of \mathbb{P}_2 .
 $- +he$ end $-$

ANOTHER SAMPLE STUDENT ANSWER

Let
$$f(x) := x-4$$
, which is in T.
Then $(4f)(x) = 4(x-4)$
 $= 4x-16$.
So $(4f)(5) = 20-16$
 $= 4$
Since $(4f)(5) \neq 1$,
 $4f$ is not in T.
So T is not closed under scalar multiplication.
Therefore T is not a subspace of \mathbb{F}_{2} .
 $- the end -$