Lecture 14b

Rank and Dimension (No row reduce)




Review

So far, we have two main algorithms for finding bases and the dimension
of special subspaces.

Finding a basis and dimension for standard subspaces

Subspace Method to find one basis Dimension
Lee | |~ Image of A Columns with L1 in REF rank
v { 2.Span of {vj,...v,} | = im(concatenation), use 1 1
3. Kernel of A Vectors in general solution | width — rank
Vi ) |+ Solutions to HSLE | = ker(coeff. matrix), use 1 1
i s. \-eigenspace of A = ker(A — Ald), use 1 0
In each case, the dimension is easy if we know a certain rank. J

Compute rank and dimension without row reduction \




For a fixed matrix A, we have two simple formulas.

dim(im(A)) = rank(A)
dim(ker(A)) = width(A) — rank(A) +

Each formula requires the rank of A...but their sum does not.

The Rank-Nullity Theorem

Let A be any matrix. Then
dim(im(A)) + dim(ker(A)) = width(A)

rank(A) ‘nullity’ of A

Nullity is an archaic word for the dimension of the kernel. |




Exercise 5

The image of the following matrix is a plane in R3.

1 -1 4
A=12 0 6
1 1 2

Find the dimension of the kernel of A.
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Subspaces with dimension 0

What dimensions are possible, and what do they tell us?
Let's consider several special cases.

Definition: The zero subspace

The zero subspace of R” only contains the zero vector.

Note: this is the only subspace with finitely many elements.
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Fact/Definition (The subspace of dimension 0)

The only 0 dimensional subspace of R” is the zero subspace.

Fact (Matrices of rank 0)

The only m X n matrix of rank 0 is the zero matrix.
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Subspaces with maximum dimension

We can also consider the case of maximum dimension.

Recall Fact: A bound on dimension of subspaces

A subspace of R"” has dimension at most n.
(A bLasis -For ® g“bSF“C’C °'F R™ has v or —Fg(,oe;r \/L(;{—orss

Fact (The subspace of maximum dimension)

The only n dimensional subspace of R" is all of R".
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Subspaces with dimension 1

Fact (Subspaces of dimension 1)

A subspace is 1 dimensional if it consists of multiples of a non-zero vector
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Fact (Matrices of rank 1)

A non-zero matrix has rank 1 if and only if all the columns are multiples
of each other.
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Exercise 6

1 2
Let A:= [2 1]

(a) Find the rank of the following matrix. (k) What is dim GO
(¢) What is the dimension of the kernel of A?
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Exercise 7

1 1 1
1 1 2
1 1 3

Let B :=

(a) Find the rank of B.

(b) What is the dimension of the image of B?
(c) What is the dimension of the kernel of B?
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We can also relate dimension to containment between subspaces.

Theorem 3: Subspaces contained in other subspaces

Let V and W be subspaces of R".
() e If V/ is contained in W, then dim(V) < dim(W). 2 e, off b
(v)e If V is contained in W and dim(V) = dim(W), then V = W.
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e
Let A and B be two matrices such that the product AB is defined.
@ Show that im(AB) is contained in im(A).
@® Show that rank(AB) < rank(A).

©® Show that rank(AB) < rank(B). Hint: Is there a trick to
reverse the order of multiplication without changing the
rank? Il yse Trancpose , Since rank () = ek () and @D =D

v

This shows the following general principle, which is virtually
impossible to show from the leading 1s definition.

Rank and matrix multiplication

rank(AB) < min(rank(A), rank(B))




Exercise 8

Let A and B be two matrices such that the product AB is defined.
@ Show that im(AB) is contained in im(A).
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Exercise 8

Let A and B be two matrices such that the product AB is defined.
@ Show that im(AB) is contained in im(A).
L@ Show that rank(AB) < rank(A).] will shew (2D
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Let A and B be two matrices such that the product AB is defined. Recall:
Ae Pant rF A ratelyx €<C,mls

® Show that im(AB) is contained in im(A). «
® Show that rank(AB) < rank(A). vank of Tts Tanspose

how that rank(AB) < rank(B). Hint: Is there a trick to vark (M) = rank ( WD)
reverse the order of multiplication without changing the
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So [Tank (AB) < vank (B




