Spanning Sets and Linear Independence




We now have several different ways to say the same thing.

Recall: Spanning sets

{vi,va,...,vp} spans V.

{vi,va,...,vp} is a spanning set for V.

V = span{vi,va,...,vp}.

V = im(the matrix whose column vectors are vi, vz, ..., Vp).

Every element of V can be written as a linear combination of
the vectors vi,va,...,v, In at least one way.




Exercise 4 (review spanning sets)

Let W be the subset of vectors in R3 whose entries are the same.
In Lecture 11b, Exercise 6, we showed that W is a subspace.

Show that
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Exercise 4 (review spanning sets)

Let W be the subset of vectors in R3 whose entries are the same.
In Lecture 11b, Exercise 6, we showed that W is a subspace.
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Spanning sets are good...

Finding a (finite) spanning set for a subspace allows us to easily
construct every element of that subspace.

...but they could be better

If our spanning set is bigger than we need, this isn't an efficient
construction.




Example (from Exercise 4)

Let W be the subset of vectors in R3 whose entries are the same.
We just showed that both
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are spanning sets for W, but the former is less efficient. A single
vector can be written as a linear combination in many ways:
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How can we measure how efficient a spanning set is?



How can we measure how efficient a spanning set is?

Measure efficiency by checking how many ways the zero vector can
be written as a linear combination.

Def: The trivial linear combination of the set {vi,va,...,vp} is
Ovy 4+ Ovy + - - - 4+ Ov,,
DEFINITION 3: Linear independence

A set of vectors is linearly independent if the only linear
combination which is equal to the zero vector is the trivial linear
combination.

Def: A set of vectors is called linearly dependent if it is not linearly
independent.

This definition makes sense for any set of vectors in R”. J




Exercise b
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Exercise b
Show (a) that
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We've stumbled on a useful way to check linear independence.

Concatenation

Given a set of vectors of the same height (in some order), the
concatenation is the matrix with those column vectors.
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Theorem: Checking linear independence

A set of m vectors {vi,Vva,...,vy} in R" is linearly independent if
the rank of their concatenation is m.

If the rank is less than m, the set is linearly dependent.
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Exercise 6(a)

Determine whether the following set is linearly independent.
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Exercise 6(b)

Determine whether the following set is linearly independent.
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Exercise 6(c)

Why must the following set of vectors be linearly dependent?
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Linear independence gives efficient linear combinations

Fact: If {vi,vo,...,v,} is linearly independent, then any vector can
be written as a linear combination of vi, v, ..., v, in at most one

either one wa
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So, to efficiently construct vectors in a subspace, we need a...

DEFINITION 4: Basis

A basis for a subspace V' is a spanning set of V' which is linearly
independent.

This is one of the most important definitions in the class. We will
see bases have a lot of remarkable properties.



The set

1
1
1

Is a basis for the subspace of 3-vectors whose entries are the same.

v

How can | tell?

» Exercise 4 shows it is a spanning set of the vectors in R3
whose entries are the same

» Exercise 5 shows that it is linearly independent.
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Goldilocks and the three properties

A set of vectors {vi,vo,...,v,} in a subspéace V is...

® _.aspanning set for V if every element of V can be written as
a linear combination in at least one way,

® _.a linearly independent set if every element of V' can be
written as a linear combination in at most one way, and

® ...a basis for V if every element of V' can be w«itten as a
linear combination in exactly one way.
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Exercise 7

Show that
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Answer +» Execcise 7
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