Spanning Sets




Last time, we generalized lines and planes through the origin.

Recall: A subspace of R”

A subspace of R” is a non-empty subset V of R"” which is

® closed under addition: that is,

for all v,w in V, the sum v+ w is in V, and

® closed under scalar multiplication; that is,

for all vin V and c in R, the product cv is in V.

Recall: Constructions of four types of subspaces

® The solution set to a homogeneous SLE

® The kernel of a matrix

® Eigenspaces of a matrix

® The image of a matrix




Recall: Checking if vectors are in these subspaces

You can check if a vector v is in...

® _._.the solution set of a SLE by plugging in the entries
(arithmetic)

® _.the kernel of A by checking if Av is 0 (arithmetic)
® ..the \-eigenspace of A by checking if Av is Av (arithmetic)

® ..the image of A by checking if Ax = v is consistent (row
reduction)




Reduce the information of a subspace (an infinite set of vectors) to
a finite set of vectors, called a spanning set.

For a solution set, we already know how to do this, by using
parameters. So we have a good answer for kernels and eigenspaces.

Exercise 1 (motivating example)

Find every element of the kernel of
A [ 2 -2 —4 4]
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Exercise 1 (motivating example)
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Important observation from Exercise 1

Our answer is equivalent to saying that every element of ker(A)
can be written as a linear combination of two vectors:
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We can observe a similar phenomenon for images.

Exercise 2

B :=
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Show that every element of im(B) is a linear combination of the
column vectors of B.
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Exercise 2
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Show that every element of im(B) is a linear combination of the
column vectors of B.
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DEFINITION 1: Span

The span of a set of vectors is the set of their linear combinations.
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Fact 1: Spans are images of matrices

The image of A equals the span of the set of column vectors of A.
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Since every image‘is a subspace, we get a result for free.

Fact 2: Spans are subspaces

The span of a set of vectors in R” is a subspace of R".

Fact 3: Subspaces are closed under spans

If a subspace contains a set of vectors, it also contains their span.

For example, if vi, v», v3 are in a subspace S, then we know that
every linear combination of v1, v», v3 is also in S.



It is easy to construct every element of a span, and so we will often
want to write a subspace as the span of a set of vectors.

DEFINITION 2: Spanning sets
A spanning set of,kV is a set of vectors whose span is V.

& Subtpace
‘S spans V' < S is a spanning set for V < V= span($)

Exercise 3

Let W be the subspace of R3 consisting of vectors whose second
entry is the average of the other two. Show that
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is a spanning set for W.
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We now have several different ways to say the same thing.

Equivalent statements

Here, V s

® {vi,v2,...,vp} spans V.
a &ub_s‘rqce

® {vi,v2,...,vp} is a spanning set for V.
® V =span{vi,va,...,Vp}.
® \/ = im(the matrix whose column vectors are vy, vz, ...,V,).

® Every element of V can be written as a linear combination of
the vectors vi,va,...,v, In at least one way.




