Subspaces, how to write proofs




Review

Definition: A subspace of R”

A subspace of R" is a non-empty subset V' of R"” which is

@ closed under addition; that is,

for all v,w in V., the sum v+ wisin V, and

@® closed under scalar multiplication; that is,

for all vin V and c in R, the product cv isin V.

Last time: examples of subspaces

® The solution set to a homogeneous SLE.

® The kernel of a matrix

® An eigenspace of a square matrix

® The image of a matrix




Showing not a subspace

Showing not a subspace

How do we show a subset S of R” is not a subspace?

We just need to find one specific counterexample to one of the
properties.

Exercise 4 (1)

Show that the unit circle in the plane is not a subspace of R?.
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Show that the unit circle in the plane is not a subspace of R?.
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Exercise 4

Show that the unit circle in the plane is not a subspace of R?.
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Showing a subspace
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Showing a subspace

How do we show a subset S of R” is a subspace?
We need to show that S is nonempty and that the two subset
properties always hold.

We have to do this for every possible case, so we cannot simply
check specific examples.

We must work with general cases (that is, abstractly).



Showing a subspace
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A word on working abstractly

We work with arbitrary objects (like numbers, vectors, and sets) with
specific properties, rather than concrete objects.

Instead of working with... ...we might work with...
the number 5 a solution x to an equation
2 :
the vector 1 a vector v in a subspace
the set R” a set \/ with a property

Why work abstractly?

® Often in math, we find an argument that works in many different
situations.

® |nstead of repeating the same argument again and again, we can
give a general argument.

Such general arguments are called proofs.



Showing a subspace
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Let W be the subset of vectors in R3 whose entries are the same. Is W
closed under addition? That is, is the sum of two elements of W always

in W7
Examples suggest it might be true that the sum of two elements of W is
always in W:

1 3 4 —1 2 1

1l + (3| = 4], -1+ 12| = |1

1 3 4 —1 2 1

But two examples are not enough! To show “the sum of two elements
of Wisin W" for all pairs in W, we need a general argument.



Showing a subspace
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Example proposition (Example 5 con't)

Let W be the subset of R3 whose entries are the same. Then W is
closed under addition.
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Showing a subspace
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Example proposition (Example 5 con't)

Let W be the subset of R3 whose entries are the same. Then W is
closed under addition.

Example proof [T ped )

Let v and w be in W. This means we can write

a b
v= |a| and w= |b| for some numbers a and b in R.
a b
a b at+b
Then v+w= |a| + |b| = |a+ b
a b a+ b

Since all the entries are the same, v+ w is in W.
Therefore, W is closed under addition.




Proof skeleton
[ Yo

A proof skeleton
Clarify is important.

Start the argument by communicating what you are assuming.

‘Let vand w bein W.’

This explains to the reader what kinds of objects we are considering and
what their properties are.

Don’t be afraid to use words to explain your computation and remind the
reader what you are showing.

‘Since all the entries are the same, v+ w is in W.’

This explains what the computation actually showed.

Conclude the argument by restating what we have shown.

‘Therefore, W is closed under addition.’

This connects the argument to the original problem.




Proof that the kernel of a matrix is a subspace
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Exercise 6

Let W be the subset of vectors in R3 whose entries are the same.
Show that W is a subspace of R3. (We've done part of the proof

already.)




Exercise 6

Let W be the subset of vectors in R3 whose entries are the same.
Show that W is a subspace of R3. (We've done part of the proof
already.)
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Exercise 6

Let W be the subset of vectors in R3 whose entries are the same.
Show that W is a subspace of R3. (We've done part of the proof
already.)
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Proof that the kernel of a matrix is a subspace
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Exercise 7 (Prove Theorem 2)

Prove that the kernel of an m X n matrix is a subspace of R”
(directly from the definition of subspace).
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Prove that the kernel of an m x n matrix is a subspace of R”
(directly from the definition of subspace).
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Exercise 7 (Prove Theorem 2)

Prove that the kernel of an m x n matrix is a subspace of R" W
(directly from the definition of subspace).
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Proof that the kernel of a matrix is a subspace
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(The same argument from above, typed)

A proof that ker(A) is a subspace

Since A0 = 0, the zero vector is in ker(A), i.e. ker(A) is non-empty.

Let v and w be in ker(A). Then Av =0 and Aw = 0.
Since matrix multiplication distributes over addition, we have

Alv+w)=Av+Aw=0+0=0
Thus, v+ w is in ker(A), and so ker(A) is closed under addition.

Next, let r be in R, and let v be in ker(A). So Av = 0.
Then

A(rv) =r(Av) =r0=0

Therefore, rv is in ker(A), and so ker(A) is closed under scalar
multiplication.

Hence, ker(A) is a subspace of R".




Proof that the kernel of a matrix is a subspace
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Writing a proof is like building a bridge

It doesn't matter if it works once or twice. It needs to work in
every possible case. Therefore, you must convince a skeptical
reader that you have covered every possible case.

When in doubt, assume the reader is a confused classmate who has
bet you $20 that you are wrong. Use standard language to avoid
confusion. Clearly cover every case to leave no doubt.




