Linear Recurrences

Example

The Fibonacci Numbers are the numbers in the sequence

$$
1,1,2,3,5,8,13,21,34,55,89, \ldots
$$

and can be defined by the linear recurrence relation

$$
f_{n+2}=f_{n+1}+f_{n} \text { for all } n \geq 0,
$$

with the initial conditions $f_{0}=1$ and $f_{1}=1$.

Problem

Find f_{100}.
Instead of using the recurrence to compute f_{100}, we'd like to find a formula for f_{n} that holds for all $n \geq 0$.
(Note: For simplicity, in this document we will work with other recurrences, corresponding to matrices with integer/fraction eigenvalues.)

A linear recurrence of length k has the form

$$
x_{n+k}=a_{1} x_{n+k-1}+a_{2} x_{n+k-2}+\cdots+a_{k} x_{n}, n \geq 0
$$

for some real numbers $a_{1}, a_{2}, \ldots, a_{k}$.

Example

The simplest linear recurrence has length one, so has the form

$$
x_{n+1}=a x_{n} \text { for } n \geq 0
$$

with $a \in \mathbb{R}$ and some initial value x_{0}.
Solution. In this case,

$$
\begin{aligned}
x_{1} & =a x_{0} \\
x_{2} & =a x_{1}=a^{2} x_{0} \\
x_{3} & =a x_{2}=a^{3} x_{0} \\
\vdots & \vdots \vdots \\
x_{n} & =a x_{n-1}=a^{n} x_{0}
\end{aligned}
$$

Therefore, $x_{n}=a^{n} x_{0}$.

Example

Let $x_{0}=0$ and $x_{1}=1$, and $x_{n+2}=2 x_{n+1}+3 x_{n}$ for $n \geq 0$. Find a formula for x_{n}. Solution. Define $V_{n}=\left[\begin{array}{c}x_{n} \\ x_{n+1}\end{array}\right]$ for each $n \geq 0$. Then

$$
V_{0}=\left[\begin{array}{l}
x_{0} \\
x_{1}
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

and for $n \geq 0$,

$$
V_{n+1}=\left[\begin{array}{l}
x_{n+1} \\
x_{n+2}
\end{array}\right]=\left[\begin{array}{c}
x_{n+1} \\
2 x_{n+1}+3 x_{n}
\end{array}\right]
$$

Now express $V_{n+1}=\left[\begin{array}{c}x_{n+1} \\ 2 x_{n+1}+3 x_{n}\end{array}\right]$ as a matrix product:

$$
V_{n+1}=\left[\begin{array}{c}
0+x_{n+1} \\
3 x_{n}+2 x_{n+1}
\end{array}\right]=\left[\begin{array}{ll}
0 & 1 \\
3 & 2
\end{array}\right]\left[\begin{array}{c}
x_{n} \\
x_{n+1}
\end{array}\right]=A V_{n}
$$

This is a linear dynamical system, so we can apply the techniques from individual project: linear dynamical system (click here), provided that A is diagonalizable.

$$
c_{A}(x)=\operatorname{det}(x I-A)=\left|\begin{array}{cc}
x & -1 \\
-3 & x-2
\end{array}\right|=x^{2}-2 x-3=(x-3)(x+1)
$$

Therefore A has eigenvalues $\lambda_{1}=3$ and $\lambda_{2}=-1$, and is diagonalizable.

Example (continued)

$x_{1}=\left[\begin{array}{l}1 \\ 3\end{array}\right]$ is an eigenvector corresponding to $\lambda_{1}=3$, and $x_{2}=\left[\begin{array}{c}-1 \\ 1\end{array}\right]$ is an eigenvector corresponding to $\lambda_{2}=-1$.
Since A has distinct eigenvalues, we know it's diagonalizable. Let $P:=\left[\begin{array}{ll}x_{1} & x_{2}\end{array}\right]=\left[\begin{array}{cc}1 & -1 \\ 3 & 1\end{array}\right]$ and $D=\left[\begin{array}{cc}3 & 0 \\ 0 & -1\end{array}\right]$. Then $A=P D P^{-1}$
Writing $P^{-1} V_{0}=\left[\begin{array}{l}b_{1} \\ b_{2}\end{array}\right]$, we get

$$
\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right]=\frac{1}{4}\left[\begin{array}{cc}
1 & 1 \\
-3 & 1
\end{array}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{4}
\end{array}\right]
$$

Therefore,

$$
\begin{aligned}
V_{n}=\left[\begin{array}{c}
x_{n} \\
x_{n+1}
\end{array}\right] & =b_{1} \lambda_{1}^{n} x_{1}+b_{2} \lambda_{2}^{n} x_{2} \\
& =\frac{1}{4} 3^{n}\left[\begin{array}{l}
1 \\
3
\end{array}\right]+\frac{1}{4}(-1)^{n}\left[\begin{array}{c}
-1 \\
1
\end{array}\right],
\end{aligned}
$$

and so

$$
x_{n}=\frac{1}{4} 3^{n}-\frac{1}{4}(-1)^{n} \text {. }
$$

Example

Solve the recurrence relation $x_{k+2}=5 x_{k+1}-6 x_{k}, k \geq 0$ with $x_{0}=0$ and $x_{1}=1$.
Solution. Write

$$
V_{k+1}=\left[\begin{array}{l}
x_{k+1} \\
x_{k+2}
\end{array}\right]=\left[\begin{array}{r}
x_{k+1} \\
-6 x_{k}+5 x_{k+1}
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 \\
-6 & 5
\end{array}\right]\left[\begin{array}{c}
x_{k} \\
x_{k+1}
\end{array}\right]
$$

Find the eigenvalues and corresponding eigenvectors for $A=\left[\begin{array}{cc}0 & 1 \\ -6 & 5\end{array}\right]$: A has eigenvalues $\lambda_{1}=2$ and $\lambda_{2}=3$ with eigenvectors $x_{1}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$ and $\mathrm{x}_{2}=\left[\begin{array}{l}1 \\ 3\end{array}\right]$.

$$
P=\left[\begin{array}{ll}
1 & 1 \\
2 & 3
\end{array}\right], P^{-1}=\left[\begin{array}{cc}
3 & -1 \\
-2 & 1
\end{array}\right]
$$

and

$$
\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right]=P^{-1} V_{0}=\left[\begin{array}{cc}
3 & -1 \\
-2 & 1
\end{array}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

Finally,

$$
\begin{gathered}
V_{k}=\left[\begin{array}{c}
x_{k} \\
x_{k+1}
\end{array}\right]=b_{1} \lambda_{1}^{k} x_{1}+b_{2} \lambda_{2}^{k} x_{2}=(-1) 2^{k}\left[\begin{array}{l}
1 \\
2
\end{array}\right]+3^{k}\left[\begin{array}{l}
1 \\
3
\end{array}\right] \\
{\left[\begin{array}{c}
x_{k} \\
x_{k+1}
\end{array}\right]=(-1) 2^{k}\left[\begin{array}{l}
1 \\
2
\end{array}\right]+3^{k}\left[\begin{array}{l}
1 \\
3
\end{array}\right]}
\end{gathered}
$$

and therefore $x_{k}=3^{k}-2^{k}$.

Student Individual Final PROBLEM 1

Let $x_{0}=0$ and $x_{1}=1$, and $x_{n+2}=x_{n+1}+2 x_{n}$ for $n \geq 0$. We will go through the steps to find a formula for x_{n} following the above methods (via diagonalization). Define $V_{n}:=\left[\begin{array}{c}x_{n} \\ x_{n+1}\end{array}\right]$ for each $n \geq 0$. So $V_{0}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$.
(9) Write down the matrix A where $V_{n+1}=A V_{n}$.
(D) By hand, compute the characteristic polynomial of A. Use it to compute the eigenvalues of A.
© Write down D, a diagonal matrix whose entries are the eigenvalues you computed. Put the larger eigenvalue λ on the first column of D. Write down an invertible P so that $A=P D P^{-1}$. (There are different ways to do this. Please use the algorithm covered in class lectures www.youtube.com/channel/UC2UZ2jPm5y7T2rvLLZYYIIg)
(c) Compute P^{-1} by hand using the row reduce algorithm, but check with a software afterwards.
(e) Use the eigenvalues, P, and P^{-1} to write down a formula for x_{n}, as shown above.

Student Individual Final PROBLEM 2

(See the student solution manual's answer for Exercise 3.4.2(b) for a similar example.) Let $x_{0}=1, x_{1}=0, x_{2}=1$, and $x_{n+3}=6 x_{n+2}-11 x_{n+1}+6 x_{n}$ for $n \geq 0$. We will go through the steps to find a formula for x_{n} following the above methods (via diagonalization).
Define $V_{n}:=\left[\begin{array}{c}x_{n} \\ x_{n+1} \\ x_{n+2}\end{array}\right]$ for each $n \geq 0$. So $V_{0}=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$.
(a) Write down a matrix B where $V_{n+1}=B V_{n}$. (I have computed for you that this matrix has three eigenvalues: $3,2,1$.)
(b) Using a software (or by hand), find three eigenvectors corresponding to the three eigenvalues. Then find write down an eigenbasis for B.
(c) Let $D:=\left[\begin{array}{lll}3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1\end{array}\right]$. Use the eigenbasis to write down an invertible matrix P such that $B=P D P^{-1}$. (There are different ways to do this. Please use the algorithm covered in class lectures www.youtube.com/channel/UC2UZ2jPm5y7T2rvLtZY99llg.)
(d) Compute P^{-1} using the row reduce algorithm. Use a software to do the row reduce (or do by hand). Write down your input and output.
(e) Use P^{-1}, P and the eigenvalues to write down a formula for x_{n}, as shown above (or as in Exercise 3.4.2(b) in the solution manual).

