Example

Given data points $(0,1),(1,2),(2,5)$ and $(3,10)$, find an interpolating polynomial $p(x)$ of degree at most three, and then estimate the value of y corresponding to $x=\frac{3}{2}$.
Solution. We want to find the coefficients r_{0}, r_{1}, r_{2} and r_{3} of

$$
p(x)=r_{0}+r_{1} x+r_{2} x^{2}+r_{3} x^{3}
$$

so that $p(0)=1, p(1)=2, p(2)=5$, and $p(3)=10$.

$$
\begin{aligned}
& p(0)=r_{0}=1 \\
& p(1)=r_{0}+r_{1}+r_{2}+r_{3}=2 \\
& p(2)=r_{0}+2 r_{1}+4 r_{2}+8 r_{3}=5 \\
& p(3)=r_{0}+3 r_{1}+9 r_{2}+27 r_{3}=10
\end{aligned}
$$

Solve this system of four equations in the four variables r_{0}, r_{1}, r_{2} and r_{3}.

$$
\left[\begin{array}{rrrr|r}
1 & 0 & 0 & 0 & 1 \\
1 & 1 & 1 & 1 & 2 \\
1 & 2 & 4 & 8 & 5 \\
1 & 3 & 9 & 27 & 10
\end{array}\right] \rightarrow \cdots \rightarrow\left[\begin{array}{rrrr|r}
1 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

Therefore $r_{0}=1, r_{1}=0, r_{2}=1, r_{3}=0$, and so $p(x)=1+x^{2}$.

$$
\text { The estimate is } y=p\left(\frac{3}{2}\right)=1+\left(\frac{3}{2}\right)^{2}=\frac{13}{4} \text {. }
$$

Theorem (§3.2 Theorem 6)

Given n data points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$ with the x_{i} distinct, there is a unique polynomial

$$
p(x)=r_{0}+r_{1} x+r_{2} x^{2}+\cdots+r_{n-1} x^{n-1}
$$

such that $p\left(x_{i}\right)=y_{i}$ for $i=1,2, \ldots, n$.

The polynomial $p(x)$ is called the interpolating polynomial for the data.
To find $p(x)$, set up a system of n linear equations in the n variables $r_{0}, r_{1}, r_{2}, \ldots, r_{n-1}$. $p(x)=r_{0}+r_{1} x+r_{2} x^{2}+\cdots+r_{n-1} x^{n-1}$:

$$
\begin{array}{cc}
r_{0}+r_{1} x_{1}+r_{2} x_{1}^{2}+\cdots+r_{n-1} x_{1}^{n-1} & =y_{1} \\
r_{0}+r_{1} x_{2}+r_{2} x_{2}^{2}+\cdots+r_{n-1} x_{2}^{n-1} & =y_{2} \\
r_{0}+r_{1} x_{3}+r_{2} x_{3}^{2}+\cdots+r_{n-1} x_{3}^{n-1} & =y_{3} \\
\vdots & \vdots \\
r_{0}+r_{1} x_{n}+r_{2} x_{n}^{2}+\cdots+r_{n-1} x_{n}^{n-1} & =y_{n}
\end{array}
$$

The coefficient matrix for this system is

$$
\left[\begin{array}{ccccc}
1 & x_{1} & x_{1}^{2} & \cdots & x_{1}^{n-1} \\
1 & x_{2} & x_{2}^{2} & \cdots & x_{2}^{n-1} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
1 & x_{n} & x_{n}^{2} & \cdots & x_{n}^{n-1}
\end{array}\right]
$$

The determinant of a matrix of this form is called a Vandermonde determinant.

The Vandermonde Determinant

Theorem (§3.2 Theorem 7)

Let $a_{1}, a_{2}, \ldots, a_{n}$ be real numbers, $n \geq 2$. The the corresponding Vandermonde determinant is

$$
\operatorname{det}\left[\begin{array}{ccccc}
1 & a_{1} & a_{1}^{2} & \cdots & a_{1}^{n-1} \\
1 & a_{2} & a_{2}^{2} & \cdots & a_{2}^{n-1} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
1 & a_{n} & a_{n}^{2} & \cdots & a_{n}^{n-1}
\end{array}\right]=\Pi_{1 \leq j<i \leq n}\left(a_{i}-a_{j}\right) .
$$

For example, see the next slide.

Example

In our earlier example with the data points $(0,1),(1,2),(2,5)$ and $(3,10)$, we have

$$
a_{1}=0, a_{2}=1, a_{3}=2, a_{4}=3
$$

giving us the Vandermonde determinant

$$
\left|\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 \\
1 & 2 & 4 & 8 \\
1 & 3 & 9 & 27
\end{array}\right|
$$

According to Theorem 7, this determinant is equal to

$$
\begin{aligned}
& \left(a_{2}-a_{1}\right)\left(a_{3}-a_{1}\right)\left(a_{3}-a_{2}\right)\left(a_{4}-a_{1}\right)\left(a_{4}-a_{2}\right)\left(a_{4}-a_{3}\right) \\
= & (1-0)(2-0)(2-1)(3-0)(3-1)(3-2)=2 \times 3 \times 2=12
\end{aligned}
$$

By Theorem 7, the Vandermonde determinant is nonzero if $a_{1}, a_{2}, \ldots, a_{n}$ are distinct.
This means that given n data points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$ with distinct x_{i}, then there is a unique interpolating polynomial

$$
p(x)=r_{0}+r_{1} x+r_{2} x^{2}+\cdots+r_{n-1} x^{n-1}
$$

Student Individual Final PROBLEM 1

Explain each step in your computation. It's OK to use a calculator to row reduce (or to check your answers).
(a) Consider these four data points: $(1,2),(2,5),(3,10)$, and $(4,-1)$.
(a) Find the interpolating polynomial $g(x)$ in \mathbb{P}_{3} using the methods shown above. (note: we've shown above that this polynomial exists and is unique, and recall from Lecture 16-17 in youtube.com/channel/UC2UZ2jPm5y7T2rvLtZY9llg that $\mathbb{P}_{\mathbf{3}}$ is the set of polynomials of degree at most 3).
(b) Use $g(x)$ to estimate the value of y corresponding to $x=0$.
(b) A forest manager wants to estimate the age (in decades) of a tree by measuring the diameter of the trunk (in meters). She obtains the following table of data:

	Tree 1	Tree 2	Tree 3
Trunk Diameter	1	2	3
Age	6	10	12

(a Compute a polynomial $f(x)$ in \mathbb{P}_{2} which fits this data using the methods shown above. (note: we've shown above that this polynomial exists and is unique, and recall that $\mathbb{P}_{\mathbf{2}}$ is the set of polynomials of degree at most 2).
(b) Use $f(x)$ to estimate the age of a tree with a trunk diameter of 1.5 m .

