Markov Chains

Markov Chains are used to model systems (or processes) that evolve through a series of stages. At each stage, the system is in one of a finite number of states.

Example (Weather Model)

Three states: sunny (S), cloudy (C), rainy (R).
Stages: days.
The state that the system occupies at any stage is determined by a set of probabilities. Important fact: probabilities are always real numbers between zero and one, inclusive.

Example (Weather Model - continued)

- If it is sunny one day, then there is a 40% chance it will be sunny the next day, and a 40% chance that it will be cloudy the next day (and a 20% chance it will be rainy the next day).

The values $40 \%, 40 \% 20 \%$ are transition probabilities, and are assumed to be known.

- If it is cloudy one day, then there is a 40% chance it will be rainy the next day, and a 25% chance that it will be sunny the next day.
- If it is rainy one day, then there is a 30% chance it will be rainy the next day, and a 50% chance that it will be cloudy the next day.

Example (Weather Model - continued)

We put the transition probabilities into a transition matrix,

$$
P=\left[\begin{array}{lll}
0.4 & 0.25 & 0.2 \\
0.4 & 0.35 & 0.5 \\
0.2 & 0.4 & 0.3
\end{array}\right]
$$

Note. Transition matrices are stochastic, meaning that the sum of the entries in each column is equal to 1 .

Suppose that it is rainy on Thursday. What is the probability that it will be sunny on Sunday?

The initial state vector, S_{0}, corresponds to the state of the weather on Thursday, so

$$
S_{0}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

Example (Weather Model - continued)

What is the state vector for Friday?

$$
S_{1}=\left[\begin{array}{l}
0.2 \\
0.5 \\
0.3
\end{array}\right]=\left[\begin{array}{lll}
0.4 & 0.25 & 0.2 \\
0.4 & 0.35 & 0.5 \\
0.2 & 0.4 & 0.3
\end{array}\right]\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]=P S_{0}
$$

To find the state vector for Saturday:

$$
S_{2}=P S_{1}=\left[\begin{array}{lll}
0.4 & 0.25 & 0.2 \\
0.4 & 0.35 & 0.5 \\
0.2 & 0.4 & 0.3
\end{array}\right]\left[\begin{array}{l}
0.2 \\
0.5 \\
0.3
\end{array}\right]=\left[\begin{array}{l}
0.265 \\
0.405 \\
0.33
\end{array}\right]
$$

Finally, the state vector for Sunday is

$$
S_{3}=P S_{2}=\left[\begin{array}{lll}
0.4 & 0.25 & 0.2 \\
0.4 & 0.35 & 0.5 \\
0.2 & 0.4 & 0.3
\end{array}\right]\left[\begin{array}{l}
0.265 \\
0.405 \\
0.33
\end{array}\right]=\left[\begin{array}{l}
0.27325 \\
0.41275 \\
0.314
\end{array}\right]
$$

The probability that it will be sunny on Sunday is 27.325%. Important fact: the sum of the entries of a state vector is always 1 .

Theorem (Theorem 1, taken from the book §2.9 Theorem 1)

If P is the transition matrix for an n-state Markov chain, then

$$
S_{m+1}=P S_{m} \text { for } m=0,1,2, \ldots
$$

Example (§2.9 Example 1)

- A customer always eats lunch either at restaurant A or restaurant B.
- The customer never eats at A two days in a row.
- If the customer eats at B one day, then the next day she is three times as likely to eat at B as at A.

What is the probability transition matrix? Answer: $P=\left[\begin{array}{cc}0 & \frac{1}{4} \\ 1 & \frac{3}{4}\end{array}\right]$
Initially, the customer is equally likely to eat at either restaurant, so

$$
\begin{gathered}
S_{0}=\left[\begin{array}{c}
\frac{1}{2} \\
\frac{1}{2}
\end{array}\right], S_{1}=\left[\begin{array}{l}
0.125 \\
0.875
\end{array}\right], S_{2}=\left[\begin{array}{l}
0.21875 \\
0.78125
\end{array}\right], S_{3}=\left[\begin{array}{l}
0.1953125 \\
0.8046875
\end{array}\right], \\
S_{4}=\left[\begin{array}{c}
0.20117 \\
0.79883
\end{array}\right], S_{5}=\left[\begin{array}{l}
0.19971 \\
0.80029
\end{array}\right], S_{6}=\left[\begin{array}{l}
0.20007 \\
0.79993
\end{array}\right], S_{7}=\left[\begin{array}{l}
0.19998 \\
0.80002
\end{array}\right],
\end{gathered}
$$

are calculated, and these appear to converge to $\left[\begin{array}{l}0.2 \\ 0.8\end{array}\right]$.

Example (§2.9 Example 3)

A wolf pack always hunts in one of three regions, R_{1}, R_{2}, and R_{3}.

- If it hunts in a region one day, it is as likely as not to hunt there again the next day.
- If it hunts in R_{1}, it never hunts in R_{2} the next day.
- If it hunts in R_{2} or R_{3}, it is equally likely to hunt in each of the other two regions the next day.
If the pack hunts in R_{1} on Monday, find the probability that it will hunt in R_{3} on Friday.

$$
P=\left[\begin{array}{ccc}
\frac{1}{2} & \frac{1}{4} & \frac{1}{4} \\
0 & \frac{1}{2} & \frac{1}{4} \\
\frac{1}{2} & \frac{1}{4} & \frac{1}{2}
\end{array}\right] \text { and } S_{0}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

We want to find S_{4}, and, in particular, the last entry in S_{4}.

$$
\begin{gathered}
S_{1}=\left[\begin{array}{c}
\frac{1}{2} \\
0 \\
\frac{1}{2}
\end{array}\right], \quad S_{2}=P S_{1}=\left[\begin{array}{ccc}
\frac{1}{2} & \frac{1}{4} & \frac{1}{4} \\
0 & \frac{1}{2} & \frac{1}{4} \\
\frac{1}{2} & \frac{1}{4} & \frac{1}{2}
\end{array}\right]\left[\begin{array}{c}
\frac{1}{2} \\
0 \\
\frac{1}{2}
\end{array}\right]=\left[\begin{array}{c}
\frac{3}{8} \\
\frac{1}{8} \\
\frac{1}{2}
\end{array}\right], \\
S_{3}=\left[\begin{array}{ccc}
\frac{1}{2} & \frac{1}{4} & \frac{1}{4} \\
0 & \frac{1}{2} & \frac{1}{4} \\
\frac{1}{2} & \frac{1}{4} & \frac{1}{2}
\end{array}\right]\left[\begin{array}{c}
\frac{3}{8} \\
\frac{1}{8} \\
\frac{1}{2}
\end{array}\right]=\left[\begin{array}{ccc}
\frac{11}{32} \\
\frac{3}{16} \\
\frac{15}{32}
\end{array}\right], S_{4}=\left[\begin{array}{ccc}
\frac{1}{2} & \frac{1}{4} & \frac{1}{4} \\
0 & \frac{1}{2} & \frac{1}{4} \\
\frac{1}{2} & \frac{1}{4} & \frac{1}{2}
\end{array}\right]\left[\begin{array}{c}
\frac{11}{32} \\
\frac{3}{16} \\
\frac{15}{32}
\end{array}\right]=\left[\begin{array}{c}
\\
\frac{29}{64}
\end{array}\right] \\
\text { Therefore, the probability of the pack hunting in } R_{3} \text { on Friday is } \frac{29}{64}
\end{gathered}
$$

Sometimes, state vectors converge to a particular vector, called the steady state vector.

Problem

How do we know if a Markov chain has a steady state vector? If the Markov chain has a steady state vector, how do we find it?

One condition ensuring that a steady state vector exists is that the transition matrix P be regular, meaning that for some integer $k>0$, all entries of P^{k} are positive (i.e., greater than zero).

Example

In §2.9 Example 1, $P=\left[\begin{array}{cc}0 & \frac{1}{4} \\ 1 & \frac{3}{4}\end{array}\right]$ is regular because

$$
P^{2}=\left[\begin{array}{ll}
0 & \frac{1}{4} \\
1 & \frac{3}{4}
\end{array}\right]\left[\begin{array}{ll}
0 & \frac{1}{4} \\
1 & \frac{3}{4}
\end{array}\right]=\left[\begin{array}{cc}
\frac{1}{4} & \frac{3}{16} \\
\frac{3}{4} & \frac{3}{16}
\end{array}\right]
$$

has all entries greater than zero.

Theorem (Theorem 2)

If P is the transition matrix of a Markov chain and P is regular, then the steady state vector can be found by solving the system

$$
S=P S
$$

for S, and then ensuring that the entries of S sum to one.
Notice that if $S=P S$, then

$$
\begin{aligned}
S-P S & =0 \\
I d S-P S & =0 \\
(I d-P) S & =0
\end{aligned}
$$

- This last line represents a system of linear equations that is homogeneous.
- This system has infinitely many solutions for any transition matrix P.
- Choose the value of the parameter so that the entries of S sum to one.

Example

$$
\text { From §2.9 Example 1, } P=\left[\begin{array}{cc}
0 & \frac{1}{4} \\
1 & \frac{3}{4}
\end{array}\right]
$$

and we've already verified that P is regular.
Now solve the system $(I d-P) S=0$.

$$
I d-P=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]-\left[\begin{array}{ll}
0 & \frac{1}{4} \\
1 & \frac{3}{4}
\end{array}\right]=\left[\begin{array}{rr}
1 & -\frac{1}{4} \\
-1 & \frac{1}{4}
\end{array}\right]
$$

Solving $(I d-P) S=0$:

$$
\left[\begin{array}{rr|r}
1 & -\frac{1}{4} & 0 \\
-1 & \frac{1}{4} & 0
\end{array}\right] \rightarrow\left[\begin{array}{rr|r}
1 & -\frac{1}{4} & 0 \\
0 & 0 & 0
\end{array}\right]
$$

The general solution in parametric form is $s_{1}=\frac{1}{4} t$, $s_{2}=t$ for $t \in \mathbb{R}$. Since $s_{1}+s_{2}=1$,

$$
\begin{aligned}
\frac{1}{4} t+t & =1 \\
\frac{5}{4} t & =1 \\
t & =\frac{4}{5}
\end{aligned}
$$

Therefore, the steady state vector is $S=\left[\begin{array}{c}\frac{1}{5} \\ \frac{4}{5}\end{array}\right]=\left[\begin{array}{l}0.2 \\ 0.8\end{array}\right]$.

Example (§2.9 Example 3)

Is there a steady state vector? If so, find it.

$$
P=\left[\begin{array}{ccc}
\frac{1}{2} & \frac{1}{4} & \frac{1}{4} \\
0 & \frac{1}{2} & \frac{1}{4} \\
\frac{1}{2} & \frac{1}{4} & \frac{1}{2}
\end{array}\right], \text { so } P^{2}=\left[\begin{array}{ccc}
\frac{1}{2} & \frac{1}{4} & \frac{1}{4} \\
0 & \frac{1}{2} & \frac{1}{4} \\
\frac{1}{2} & \frac{1}{4} & \frac{1}{2}
\end{array}\right]\left[\begin{array}{ccc}
\frac{1}{2} & \frac{1}{4} & \frac{1}{4} \\
0 & \frac{1}{2} & \frac{1}{4} \\
\frac{1}{2} & \frac{1}{4} & \frac{1}{2}
\end{array}\right]=\left[\begin{array}{ccc}
\frac{5}{8} & \frac{5}{16} & \frac{5}{16} \\
\frac{1}{8} & \frac{5}{16} & \frac{1}{4} \\
\frac{1}{2} & \frac{3}{8} & \frac{7}{16}
\end{array}\right]
$$

So P is regular and a steady state vector exists. Now solve the system $(I d-P) S=0$:

$$
\left[\begin{array}{rrr|r}
\frac{1}{2} & -\frac{1}{4} & \left.-\frac{1}{4} \right\rvert\, c \\
0 & \frac{1}{2} & -\frac{1}{4} & 0 \\
-\frac{1}{2} & -\frac{1}{4} & \frac{1}{2} & 0
\end{array}\right] \rightarrow\left[\begin{array}{rrr|r}
\frac{1}{2} & -\frac{1}{4} & \left.-\frac{1}{4} \right\rvert\, c \\
0 & \frac{1}{2} & -\frac{1}{4} & 0 \\
0 & -\frac{1}{2} & \frac{1}{4} & 0
\end{array}\right] \rightarrow\left[\begin{array}{rrr|r}
1 & -\frac{1}{2} & -\frac{1}{2} & 0 \\
0 & \frac{1}{2} & -\frac{1}{4} & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{rrr}
1 & 0 & -\frac{3}{4} \\
0 & 1 & -\frac{1}{2} \\
0 & 0 & 0
\end{array}\right.
$$

The general solution in parametric form is

$$
s_{3}=t, s_{2}=\frac{1}{2} t, s_{1}=\frac{3}{4} t, \text { where } t \text { is in } \mathbb{R} .
$$

Since $s_{1}+s_{2}+s_{3}=1$,

$$
t+\frac{1}{2} t+\frac{3}{4} t=1
$$

implying that $t=\frac{4}{9}$. Therefore the steady state vector is $S=\left[\begin{array}{c}\frac{3}{9} \\ \frac{2}{9} \\ \frac{4}{9}\end{array}\right]$.

Student Individual Final PROBLEM

Assume there are 3 economic classes, upper, middle, and lower, and that economic mobility behaves as follows.

- Of the children of upper-class parents, 80 percent remains upper-class, 10 percent become middle-class and 10 percent become lower-class.
- Of the children of middle-class parents, 10 percent become upper-class, 70 percent remain middle-class, and 20 percent become lower-class.
- Of the children of lower-class parents, 10 percent become upper-class, 20 percent become middle-class, and 70 percent remain lower-class
a. Write down the transition matrix P following the convention given in above slides. (Sanity check: make sure that each column of your matrix sum up to 1 .)
b. What is the probability that a grandchild of lower-class parents becomes upper-class? (Hint: Use above methods. If the 3rd column of your transition matrix P correspond to lower-class parents and if you want to use an initial state vector S_{0}, you should use $S_{0}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$.) (Con't to the next page)

Student Individual Final PROBLEM (con't)

c. Determine whether P is regular (explain why or why not).
d. If P is regular, then find the steady state vector using Theorem 2 in egunawan.github.io/la/finalproject/project_markov_chains.pdf.
e. Use your previous answers to find the long-term breakdown of society into these 3 classes. If not possible, explain why.

Hint: This is meant to be a straightforward problem. The techniques used in above examples (and examples in Section 2.9 of the textbook) are sufficient to answer this!

