Linear Dynamical Systems

A linear dynamical system consists of

• an $n \times n$ matrix A and an *n*-vector V_0 ;

• a matrix recursion defining V_1, V_2, V_3, \ldots by $V_{k+1} = AV_k$; i.e.,

$$V_{1} = AV_{0}$$

$$V_{2} = AV_{1} = A(AV_{0}) = A^{2}V_{0}$$

$$V_{3} = AV_{2} = A(A^{2}V_{0}) = A^{3}V_{0}$$

$$\vdots \vdots$$

$$V_{k} = A^{k}V_{0}.$$

Linear dynamical systems are used, e.g., to model the evolution of populations over time. If A is diagonalizable, then

$$A = PDP^{-1}$$

where *D* is a diagonal matrix with eigenvalues as entries and *P* is the appropriate concatenation of an eigenbasis of *A*. Thus $A^k = PD^kP^{-1}$. Therefore,

$$V_k = A^k V_0 = PD^k P^{-1} V_0$$

Example

Consider the linear dynamical system $V_{k+1} = AV_k$ with

$$A = \left[\begin{array}{cc} 2 & 0 \\ 3 & -1 \end{array} \right], \text{ and } V_0 = \left[\begin{array}{c} 1 \\ -1 \end{array} \right].$$

Find a formula for V_k .

Solution. First, compute the characteristic polynomial: $\rho_A(x) = (x - 2)(x + 1)$, so A has distinct eigenvalues $\lambda_1 = 2$ and $\lambda_2 = -1$, and thus is diagonalizable.

Solve
$$(2I - A)x = 0$$
:

$$\begin{bmatrix} 0 & 0 & | & 0 \\ -3 & 3 & | & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & | & 0 \\ 0 & 0 & | & 0 \end{bmatrix}$$
has general solution $x = \begin{bmatrix} s \\ s \end{bmatrix}$, $s \in \mathbb{R}$, so one possible eigenvector is $x_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$. Solve
 $(-I - A)x = 0$:

$$\begin{bmatrix} -3 & 0 & | & 0 \\ -3 & 0 & | & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & | & 0 \\ 0 & 0 & | & 0 \end{bmatrix}$$
has general solution $x = \begin{bmatrix} 0 \\ t \end{bmatrix}$, $t \in \mathbb{R}$, so one possible eigenvector is $x_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.
Thus, set $P := \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$. Then $P^{-1} = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix}$,
and $D = P^{-1}AP = \begin{bmatrix} 2 & 0 \\ 0 & -1 \end{bmatrix}$.

◀

Originally written by K. Seyffarth for lyryx Linear Dynamical Systems and approximation Page 2/8

Example (continued)

Therefore,

$$\begin{split} \mathcal{V}_{k} &= A^{k} V_{0} \\ &= PD^{k}P^{-1}V_{0} \\ &= \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & -1 \end{bmatrix}^{k} \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix} \\ &= \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 2^{k} & 0 \\ 0 & (-1)^{k} \end{bmatrix} \begin{bmatrix} 1 \\ -2 \end{bmatrix} \\ &= \begin{bmatrix} 2^{k} & 0 \\ 2^{k} & (-1)^{k} \end{bmatrix} \begin{bmatrix} 1 \\ -2 \end{bmatrix} \\ &= \begin{bmatrix} 2^{k} \\ 2^{k} - 2(-1)^{k} \end{bmatrix} \end{aligned}$$

◄

Remark

Often, instead of finding an exact formula for V_k , it suffices to estimate V_k as k gets large.

This can easily be done if A has a dominant eigenvalue with multiplicity one: an eigenvalue λ_1 with the property that

 $|\lambda_1| > |\lambda_j|$ for j = 2, 3, ..., n.

Suppose that

$$V_k = PD^k P^{-1} V_0,$$

and assume that A has a dominant eigenvalue, λ_1 , with a corresponding eigenvector x_1 as the first column of P.

For convenience, write $P^{-1}V_0 = \begin{vmatrix} b_1 \\ b_2 \\ \cdots \\ b_n \end{vmatrix}$.

Then

$$\begin{split} V_k &= PD^k P^{-1} V_0 \\ &= \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix} \begin{bmatrix} \lambda_1^k & 0 & \cdots & 0 \\ 0 & \lambda_2^k & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & \lambda_n^k \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix} \\ &= b_1 \lambda_1^k x_1 + b_2 \lambda_2^k x_2 + \cdots + b_n \lambda_n^k x_n \\ &= \lambda_1^k \left(b_1 x_1 + b_2 \left(\frac{\lambda_2}{\lambda_1} \right)^k x_2 + \cdots + b_n \left(\frac{\lambda_n}{\lambda_1} \right)^k x_n \right) \\ &\text{Now, } \left| \frac{\lambda_j}{\lambda_1} \right| < 1 \text{ for } j = 2, 3, \dots n, \text{ and thus } \left(\frac{\lambda_j}{\lambda_1} \right)^k \to 0 \text{ as } k \to \infty. \end{split}$$
Therefore, for large values of k , $V_k \approx \lambda_1^k b_1 x_1$.

◄

Example

If
$$A := \begin{bmatrix} 2 & 0 \\ 3 & -1 \end{bmatrix}$$
, and $V_0 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$, estimate $V_k = A^k V_0$ for large values of k .

Solution. In our previous example, we found that A has eigenvalues $\lambda_1 = 2$ and $\lambda_2 = -1$. This means that $\lambda_1 = 2$ is a dominant eigenvalue.

As before $x_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ is an eigenvector for $\lambda_1 = 2$, and $x_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ is an eigenvector for $\lambda_2 = -1$, giving us $P = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$, and $P^{-1} = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix}$. $P^{-1}V_0 = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 \\ -2 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$ For large values of k,

$$V_k pprox \lambda_1^k b_1 \mathbf{x}_1 = 2^k (1) \left[egin{array}{c} 1 \ 1 \end{array}
ight] = \left[egin{array}{c} 2^k \ 2^k \end{array}
ight]$$

Compare this approximation to the exact formula for V_k that we obtained earlier:

$$V_k = \left[egin{array}{c} 2^k \ 2^k - 2(-1)^k \end{array}
ight]$$

Student Individual Final PROBLEM 1

Let
$$V_{k+1} = \begin{bmatrix} 2 & 1 \\ 4 & -1 \end{bmatrix} V_k$$
, and $V_0 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$

Let $A := \begin{bmatrix} 2 & 1 \\ 4 & -1 \end{bmatrix}$. We will go through the steps to approximate V_k for large k.

- By hand, compute the characteristic polynomial of A. Use it to compute the eigenvalues of A. One of the eigenvalues is the dominant eigenvalue λ; what is it?
- Write down D, a diagonal matrix whose entries are the eigenvalues you computed. Put the dominant eigenvalue λ on the first column of D. Write down an invertible P so that $A = PDP^{-1}$. (There are different ways to do this. Please use the algorithm covered in class lectures www.youtube.com/channel/UC2UZ2jPm5y7T2rvLtZY9llg)
- Compute P⁻¹ by hand using the row reduce algorithm, but check with a software afterwards.
- **(**) For large values of k, use the dominant eigenvalue, P, and P^{-1} to estimate $A^k V_0$. (The easiest way is to follow the steps shown in the slides above!)

Student Individual Final PROBLEM 2

Let
$$V_{k+1} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 2 & 3 \\ 1 & 4 & 1 \end{bmatrix} V_k$$
, and $V_0 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$

Let $B := \begin{bmatrix} 1 & 0 & 0 \\ 1 & 2 & 4 \\ 1 & 4 & 1 \end{bmatrix}$. I have computed that the eigenvalues of B: 5, 1, -2. (What is the dominant eigenvalue?)

- Using a software (or by hand), find 3 eigenvectors corresponding to the three eigenvalues. Use them to find an eigenbasis for *B*. (There are different methods. Use the algorithm covered in class lectures www.youtube.com/channel/UC2UZ2jPm5y7T2rvLtZY9llg)
- Let $D := \begin{bmatrix} 5 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{bmatrix}$. Use the eigenbasis to write down an invertible matrix P such that $B = PDP^{-1}$.
- Compute P⁻¹ using the row reduce algorithm. Use a software to do the row reduce (or do by hand). Write down your input and output.
- **(**) Use P^{-1} , P and the dominant eigenvalue to approximate V_k for large k, as shown above. (Use the steps shown in the slides above!)