Linear Dynamical Systems

A linear dynamical system consists of

- an $n \times n$ matrix A and an n-vector V_{0};
- a matrix recursion defining $V_{1}, V_{2}, V_{3}, \ldots$ by $V_{k+1}=A V_{k}$; i.e.,

$$
\begin{aligned}
V_{1} & =A V_{0} \\
V_{2} & =A V_{1}=A\left(A V_{0}\right)=A^{2} V_{0} \\
V_{3} & =A V_{2}=A\left(A^{2} V_{0}\right)=A^{3} V_{0} \\
\vdots & \vdots \\
V_{k} & =A^{k} V_{0} .
\end{aligned}
$$

Linear dynamical systems are used, e.g., to model the evolution of populations over time. If A is diagonalizable, then

$$
A=P D P^{-1}
$$

where D is a diagonal matrix with eigenvalues as entries and P is the appropriate concatenation of an eigenbasis of A.
Thus $A^{k}=P D^{k} P^{-1}$. Therefore,

$$
V_{k}=A^{k} V_{0}=P D^{k} P^{-1} V_{0} .
$$

Example

Consider the linear dynamical system $V_{k+1}=A V_{k}$ with

$$
A=\left[\begin{array}{rr}
2 & 0 \\
3 & -1
\end{array}\right], \text { and } V_{0}=\left[\begin{array}{r}
1 \\
-1
\end{array}\right] .
$$

Find a formula for V_{k}.
Solution. First, compute the characteristic polynomial: $\rho_{A}(x)=(x-2)(x+1)$, so A has distinct eigenvalues $\lambda_{1}=2$ and $\lambda_{2}=-1$, and thus is diagonalizable.
Solve $(2 I-A) x=0: \quad\left[\begin{array}{cc|c}0 & 0 & 0 \\ -3 & 3 & 0\end{array}\right] \rightarrow\left[\begin{array}{cc|c}1 & -1 & 0 \\ 0 & 0 & 0\end{array}\right]$
has general solution $\mathrm{x}=\left[\begin{array}{c}s \\ s\end{array}\right], s \in \mathbb{R}$, so one possible eigenvector is $\mathrm{X}_{1}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$. Solve $(-I-A) \mathrm{x}=0: \quad\left[\begin{array}{ll|l}-3 & 0 & 0 \\ -3 & 0 & 0\end{array}\right] \rightarrow\left[\begin{array}{ll|l}1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$
has general solution $\mathrm{x}=\left[\begin{array}{l}0 \\ t\end{array}\right], t \in \mathbb{R}$, so one possible eigenvector is $\mathrm{x}_{2}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$.
Thus, set $P:=\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]$. Then $P^{-1}=\left[\begin{array}{cc}1 & 0 \\ -1 & 1\end{array}\right]$,
and $D=P^{-1} A P=\left[\begin{array}{cc}2 & 0 \\ 0 & -1\end{array}\right]$.

Example (continued)

Therefore,

$$
\begin{aligned}
V_{k} & =A^{k} V_{0} \\
& =P D^{k} P^{-1} V_{0} \\
& =\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
2 & 0 \\
0 & -1
\end{array}\right]^{k}\left[\begin{array}{cc}
1 & 0 \\
-1 & 1
\end{array}\right]\left[\begin{array}{c}
1 \\
-1
\end{array}\right] \\
& =\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
2^{k} & 0 \\
0 & (-1)^{k}
\end{array}\right]\left[\begin{array}{c}
1 \\
-2
\end{array}\right] \\
& =\left[\begin{array}{cc}
2^{k} & 0 \\
2^{k} & (-1)^{k}
\end{array}\right]\left[\begin{array}{c}
1 \\
-2
\end{array}\right] \\
& =\left[\begin{array}{c}
2^{k} \\
2^{k}-2(-1)^{k}
\end{array}\right]
\end{aligned}
$$

Remark

Often, instead of finding an exact formula for V_{k}, it suffices to estimate V_{k} as k gets large.

This can easily be done if A has a dominant eigenvalue with multiplicity one: an eigenvalue λ_{1} with the property that

$$
\left|\lambda_{1}\right|>\left|\lambda_{j}\right| \text { for } j=2,3, \ldots, n .
$$

Suppose that

$$
V_{k}=P D^{k} P^{-1} V_{0}
$$

and assume that A has a dominant eigenvalue, λ_{1}, with a corresponding eigenvector x_{1} as the first column of P.
For convenience, write $P^{-1} V_{0}=\left[\begin{array}{c}b_{1} \\ b_{2} \\ \cdots \\ b_{n}\end{array}\right]$.

Then

$$
\begin{aligned}
V_{k} & =P D^{k} P^{-1} V_{0} \\
& =\left[\begin{array}{llll}
\mathrm{x}_{1} & \mathrm{x}_{2} & \cdots & \mathrm{x}_{n}
\end{array}\right]\left[\begin{array}{cccc}
\lambda_{1}^{k} & 0 & \cdots & 0 \\
0 & \lambda_{2}^{k} & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots \\
0 & 0 & \cdots & \lambda_{n}^{k}
\end{array}\right]\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{n}
\end{array}\right] \\
& =b_{1} \lambda_{1}^{k} \mathrm{x}_{1}+b_{2} \lambda_{2}^{k} \mathrm{x}_{2}+\cdots+b_{n} \lambda_{n}^{k} \mathrm{x}_{n} \\
& =\lambda_{1}^{k}\left(b_{1} \mathrm{x}_{1}+b_{2}\left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{k} \mathrm{x}_{2}+\cdots+b_{n}\left(\frac{\lambda_{n}}{\lambda_{1}}\right)^{k} \mathrm{x}_{n}\right)
\end{aligned}
$$

Now, $\left|\frac{\lambda_{j}}{\lambda_{1}}\right|<1$ for $j=2,3, \ldots n$, and thus $\left(\frac{\lambda_{j}}{\lambda_{1}}\right)^{k} \rightarrow 0$ as $k \rightarrow \infty$.
Therefore, for large values of $k, V_{k} \approx \lambda_{1}^{k} b_{1} \mathrm{x}_{1}$

Example

$$
\text { If } A:=\left[\begin{array}{rr}
2 & 0 \\
3 & -1
\end{array}\right], \text { and } V_{0}=\left[\begin{array}{r}
1 \\
-1
\end{array}\right] \text {, estimate } V_{k}=A^{k} V_{0} \text { for large values of } k
$$

Solution. In our previous example, we found that A has eigenvalues $\lambda_{1}=2$ and $\lambda_{2}=-1$. This means that $\lambda_{1}=2$ is a dominant eigenvalue.
As before $\mathrm{x}_{1}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ is an eigenvector for $\lambda_{1}=2$, and $\mathrm{x}_{2}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$ is an eigenvector for $\lambda_{2}=-1$, giving us

$$
\begin{aligned}
P & =\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right], \text { and } P^{-1}=\left[\begin{array}{rr}
1 & 0 \\
-1 & 1
\end{array}\right] . \\
P^{-1} V_{0} & =\left[\begin{array}{rr}
1 & 0 \\
-1 & 1
\end{array}\right]\left[\begin{array}{r}
1 \\
-1
\end{array}\right]=\left[\begin{array}{r}
1 \\
-2
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right]
\end{aligned}
$$

For large values of k,

$$
V_{k} \approx \lambda_{1}^{k} b_{1} x_{1}=2^{k}(1)\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
2^{k} \\
2^{k}
\end{array}\right]
$$

Compare this approximation to the exact formula for V_{k} that we obtained earlier:

$$
V_{k}=\left[\begin{array}{c}
2^{k} \\
2^{k}-2(-1)^{k}
\end{array}\right]
$$

Student Individual Final PROBLEM 1

$$
\text { Let } \quad V_{k+1}=\left[\begin{array}{rr}
2 & 1 \\
4 & -1
\end{array}\right] V_{k}, \quad \text { and } V_{0}=\left[\begin{array}{r}
1 \\
-1
\end{array}\right] .
$$

Let $A:=\left[\begin{array}{cc}2 & 1 \\ 4 & -1\end{array}\right]$. We will go through the steps to approximate V_{k} for large k.
(© By hand, compute the characteristic polynomial of A. Use it to compute the eigenvalues of A. One of the eigenvalues is the dominant eigenvalue λ; what is it?
(D) Write down D, a diagonal matrix whose entries are the eigenvalues you computed. Put the dominant eigenvalue λ on the first column of D. Write down an invertible P so that $A=P D P^{-1}$. (There are different ways to do this. Please use the algorithm covered in class lectures www.youtube.com/channel/UC2UZ2jPm5y7T2rvLtZY9IIg)
(Compute P^{-1} by hand using the row reduce algorithm, but check with a software afterwards.
(c) For large values of k, use the dominant eigenvalue, P, and P^{-1} to estimate $A^{k} V_{0}$. (The easiest way is to follow the steps shown in the slides above!)

Student Individual Final PROBLEM 2

$$
\text { Let } \quad V_{k+1}=\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 2 & 3 \\
1 & 4 & 1
\end{array}\right] V_{k}, \quad \text { and } V_{0}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

Let $B:=\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 2 & 3 \\ 1 & 4 & 1\end{array}\right]$. I have computed that the eigenvalues of $B: 5,1,-2$. (What is the dominant eigenvalue?)
(c) Using a software (or by hand), find 3 eigenvectors corresponding to the three eigenvalues. Use them to find an eigenbasis for B. (There are different methods. Use the algorithm covered in class lectures www.youtube.com/channel/UC2UZ2jPm5y7T2rvLtZY9Ilg)
(6) Let $D:=\left[\begin{array}{ccc}5 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2\end{array}\right]$. Use the eigenbasis to write down an invertible matrix P such that $B=P D P^{-1}$.
(© Compute P^{-1} using the row reduce algorithm. Use a software to do the row reduce (or do by hand). Write down your input and output.
(c) Use P^{-1}, P and the dominant eigenvalue to approximate V_{k} for large k, as shown above. (Use the steps shown in the slides above!)

