Lecture 16b

Vector Spaces (subspaces)
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(Recall) Definition 1: A vector space

A vector space is a set V in which
® there is a rule to add any two elements v, w in V, and
® there is a rule to multiply any v in V' by any scalar r in R,

such that eight axioms hold.

Idea: a vector space is a set of objects that behave like a set of vectors.
Examples of vector spaces:

> R* (the set of vectors of height 4)
P (the set of polynomials in x)
P, (the set of polynomials of degree at most 2)

>

>

> S (the set of sequences)

> R**5 (the set of 4 x 5 matrices)
>

C® (the set of smooth functions of x)



A direct proof that a set is a vector space is tedious because it
requires eight proofs (one for each axiom).
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There is one situation in which we don’t have to check the axioms.

Making vector spaces out of bigger vector spaces

Let's say we already know V' is a vector space.
Given a subset W of V/, we can define addition and scalar
multiplication in W by restricting the existing definitions in V.

® This only works if the sum of two elements in WV is still
in W, and the scalar multiple of an element in W is still
in W!

¢ |f this works, all eight axioms are free, because they hold
in V!

Intuitively, W inherits the nice properties from V.




Let's say we already know P is a vector space, but not P3.

® To add two polynomials in P3, add them as polynomials in P,
and observe the result is still in P3.

® Scalar multiplication is defined the same way, and also does
not leave P;.

Since the axioms hold in P, they automatically hold in Py. So I’
is a vector space.
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We already have a name for this phenomenon; let’s reuse it.

Defintion 4: Subspace of a vector space

Let V be a vector space. A subspace of V is a non-empty subset
W of V which is... °.

.o closed under addition; that is,
for all v,w in W, the sum v+ w is in W, and
2 o closed under scalar multiplication; that is,

for all v.in W and c in R, the product cv is in W.

Whenever this happens, we get the axioms for free. That is...

Fact 7 (Subspaces are vector spaces)

A subspace of a vector space is also a vector space.

e Many of the tdess ( subcpaces, baces, dimentions ) from IR
Wil qeneralize e other vector sypaces
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Let V be the set of polynomials with a factor of (x + 1); that is,
V.={(x+1)f | finP}
Show that V is a subspace of PP.

Let W be the set of sequences beginning with 1; that is,
W = {{, x1, x2, x3,...)| x; in R}

Show that W is not a subspace of S.
— o

-{-1:e Vecker SpalL of all Sequences



Exercise 2 Fre 1/4

Let V be the set of polynomials with a factor of (x + 1); that is,
Vi={(x+1)f|finP}

Show that V is a subspace of P.
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Exercise 2 P9 2/%

Let V be the set of polynomials with a factor of (x + 1); that is,
V={(x+1)f|finP}
Show that V is a subspace of P.
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Exercise 2 P2 4/4

Let V be the set of polynomials with a factor of (x + 1); that is, CAMPLE STUDENT ANSWER

V={(x+1)f|finP}
Show that V is a subspace of P.
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Exercise 3 73 /2
Let W be the set of sequences beginning with 1; that is,

W .= {@,xl,XQ,X3, ..)| xi in R}
Show that W is not a subspace of S.
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Exercise 3 Py 2/2

Let W be the set of sequences beginning with 1; that is,
W .= {@,xl,XQ,X3, ..)| xi in R}
Show that W is not a subspace of S.
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More examples of vector spaces constructed as subspaces

» Our favorite subspaces of R":
» Images, spans, kernels, eigenspaces, and solutions to HSLEs.

» Each P, is a subspace of P.
» The symmetric 3 x 3 matrices form a subspace of R3*3,

» P is a subspace of C*°.

> [:Fh s 3 Su‘ps'fa ce -F F)
¥ = a subspace ,_F Cc’o



Recall:
» C> denotes the set of smooth functions in x
> (C is a vector space

Exercise 4
Let S denote the set of smooth functions f(x) in C* such that

1! =

f'(x) =4(x). That'is,
S ={f(x)inC>®| f"(x) =F(x)}.

Show that S is a subspace of C*°.

According to Definition 4, we need to show that ...
D. we can name a Swusth function .{l in £ where £rz-f
LS is closed under addition
2. S is closed under scalar mu{+,-}>/,-m-[-;m‘



» (C°° denotes the set of smooth functions in x
» (C is a vector space

Exercise 4 +9 1/4

Let S denote the set of smooth functions f(x) in C* such that S i the cet of colutions Ao H, a{fﬂ; /
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» C* denotes the set of smooth functions in x
» (™ is a vector space

Exercise 4 P9y Z

Let S denote the set of smooth functions f(x) in C* such that
F'(x) =f(x). That is,
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Show that S is a subspace of C*®
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» C* denotes the set of smooth functions in x
» (™ is a vector space

Brcse dP7 BR
Let S denote the set of smooth functions f(x) in C* such that
' (x) :-:f(x). That is,

Show that S is a subspace of C°.
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» C* denotes the set of smooth functions in x
» (™ is a vector space

Exercise 4 P9 /4

Let S denote the set of smooth functions f(x) in C* such that
£ (x) = $(x). That is,

S ={f(x)in C= | f'(x) =F(x)}.

Show that S is a subspace of C°.

SAMPLE STUDENT ANSWER
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In the last exercise, we saw an example of the following theorem.

Theorem 8 (Differential equations and linear algebra)

The solutions to a linear differential equation form subspace of C*°

This allows us to use the techniques of linear algebra to study the
vector space of solutions to a given linear differential equation. For
example ...

If f1,f,..., f, are solutions to a linear differential equation, then
any linear combination

af + b+ -+ cafy

is also a solution.




Recall:
> P, denotes the set of polynomials f(x) of degree at most 2.

> P, is a vector space.

Exercise 5(a)

Let S denote the set of polynomials in P> such that f(5) = 0.
That is,
S ={f(x) in Py | f(5) = 0}.

Show whether S is a subspace or not a subspace of PP».

\

Exercise 5(b)

Let T denote the set of polynomials in P> such that f(5) = 1.
That is,

T = {f(x) in Py | £(5) = 1}.

Show whether T is a subspace or not a subspace of P».

A\

(Here, f(5) means ‘plug in 5 for x'.)



» P, denotes the set of polynomials f(x) of degree at most 2.

» P, is a vector space.

Exercise 5(a) Pp 1 /=2
Let S denote the set of polynomials in P, such that 7(5) = 0.
That is,

S = {f(x) in P, | £(5) = 0}.

Show whether S is a subspace or not a subspace of P».
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» P, denotes the set of polynomials f(x) of degree at most 2. T -
vy to chewd That & (s a  sublypace :
» P, is a vector space. J ?

Exercise 5(a) 9 2/3 0. £ 75 nonem F‘fj: 1.8 7= closed uder oddifion ;
Let S denote the set of polynomials in P such that f(5) = 0. 2. 8 is  choced undes scalar vv\uHI'P(Fca’f— iow
That is, '

S = {f(x) in P, | £(5) = 0}.

Show whether S is a subspace or not a subspace of P».

2. let ¢ be % R avd let f b ™ S.
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» P, denotes the set of polynomials f(x) of degree at most 2.
» P, is a vector space.
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Let S denote the set of polynomials in 5 such that £(5) = 0. D(K_’\’h_/ 1 <2
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Shew wietier § isj ;u:s::c)e:r]?o‘t Z(izl;p(:}ce of Py. So X-5 s Ta S Thie Shows S is nonem ‘|>+J _
1. let -F— ard g be. 1™ S
CAMPLE Tt s, —r— 20l 9 ave ?ebnomTﬂlS with olcjf(c_ 2 or  craller 5 and
CTUDENT $(=0
ANSWER

9()=0.

Co {-fg is a ?ﬂlgr\o-(v)\\d\ with a{ejrce. 2 of EW”:G and

G+ - FOo 9

= 0D +0°

"

= O
Tbxe.re-Fora —,C+g, e in S, So S is clsed  under addition.

2. et ¢ be W R ard et £ ke ™ S
That 15, f = a 'Fcbnom-'a\ Tn < with olc\gr‘ca 2 or swaller) and

f& =o.
Then C,—F s also in H;_ and
(D= < f6

=c.o
e
Soof Ta & Therefore S is closed under tealar Wul¥i pliesrtion.
Thus, S s a Su‘asTace f 1.
— The. end —



Exercise 5(b) Py /2

Let T denote the set of polynomials in P, such that f(5) = 1.
That is,

T ={f(x)inPy| f(5) =1}
Show whether T is a subspace or not a subspace of P5.
FM‘Q Cerateh work C Por{t  subrmit your Sevatch werk l>

Tna 4o show T s & &u‘o&?ate'

00T s remncrpt
[. T s cloced urder oddi+ian
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Let f)i= x4 , which & W T
Then (F+£)00= x4 + x4
= 2X-9

so F)(D= 2(5)-3
=2
Since F+N#1, F+f 15wt W T

Se T i et clesed under addition. Cherefore T is vtz tubepace of o



Exercise 5(b) Py 2/2

Let T denote the set of polynomials in P such that f(5) = 1.
That is,
T ={f(x)inP, | f(5) =1}.

Show whether T is a subspace or not a subspace of P».

SAMPLE STUDENT ANSLWER

Let f)i= x4 , which & W T

Then (F+£)00= x4 + x4

= 2X-9

so F)(D= 2(5)-3
=2
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ANOTHER SAMPLE STUDENT ANSWER

Let 6= xX-4, vbhich & 7w T.

Then {05 2 (x—4)

= Ax-le .
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=4
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