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Recall: Shapes of solutions

The solution set to a system of linear equations (SLE) must be one
of the following.

® An empty set no solufien

) A point ovie wﬁ%qe colufion

. A Iine need one ?ﬂf‘aw\e'f'ef ) dimension is

o A pIane need two Tarame‘f'e_rs) dirmension s 2

® ...a shape in higher dimension?

This is a remarkably powerful classification!
® The shape is determined by its dimension,

® The shapes all share many nice properties (e.g. contain the
line through any pair of points).
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We will focus on the “shapes of solutions” for homogeneous system of linear
equations (SLE).

Recall (Definition): A system of linear equations (SLE) is called homogeneous
if the constants are zero; equivalently, the matrix equation is Av = 0.

Shapes of solutions (homogeneous)

The solution set to a homogeneous SLE must be one of:
® The origin
® A line through the origin =~ ftquires one  paramefec , direncion:

® A plane through the origin requires o paramefers, dimension: 2

® ..a higher dimensional shape through the origin?

Why focus on homogeneous systems?

® The properties are nicer.

® The solution set to a general SLE turns out to be a translation of the
solution set to a homogeneous SLE.
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Define and study these general planar shapes through the origin.

We cannot use pictures or our geometric intuition for vectors of
height 4 or taller.

Our strategy

Find a few essential properties that characterize these planar
shapes, and then use those properties as a general definition.

That is, what properties distinguish the solution sets to
homogeneous SLEs from all other shapes?
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O00e000

First, we introduce new terminology.

Definition 1: Subsets

Suppose A is a set and B is another set whose elements are all elements of A.
Then we say that B is a subset of A. We also say that A contains B.

Examples
® The set {1,3} is a subset of {1, 2,3}.
® The set {1,3} is also a subset of the set of real numbers R.
® Any set V consisting some vectors of height 2 is subset of R2.
® The set R? (all vectors of height 2) is a subset of R.
® Every set is a subset of itself.

® The set R? is not a subset of R, because a vector of height 2 is not a
vector of height 3.

® The set {1, 2} is not a subset of Z (the set of integers).
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Definition 2: “closed under addition” and ‘“closed under scalar

multiplication” for subsets

Suppose S is a subset of R”.
@ We say that S is closed under addition if ...

forall v,win S, the sumv+wisin S

® We say that S is closed under scalar multiplication if ...

forall vin S and c in R, the product cvis in S.
K_’—N
A number ¢

Let S be a non-empty subset of R” which is closed under scalar
multiplication. Show that S must contain the zero vector.




Exercise 1

Let S be a non-empty subset of R” which is closed under scalar
multiplication. Show that S must contain the zero vector.

Colution :
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Stace S is  ron-empty and S is a subset of R,

we kaow S contains at least one vector of Lue,(abrb n.
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Exercise 1

Let S be a non-empty subset of R” which is closed under scalar
multiplication. Show that S must contain the zero vector.

Whenever wWe Koo Hat o cubctet of R."

is nonamp{’ﬂ and is  closed urder  cealac

Hwot  Aats

rY\uH'IFch,acHon) we alsoe kno o

Subset  containg the Zero vectev
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Theorem 1 (Properties of solution sets to homogeneous SLEs)

Let V' be the solution set to a homogeneous system of linear
equations in nsvariables. Then...

® \/ is a subset of R”: that is, the elements of V are n-vectors.
® \/ contains the zero vector.

® V is closed under addition; that is,

for all v,w in V, the sum v+ w is in V, and

® V is closed under scalar multiplication; that is,

for all vin V and c in R, the product cv is in V.

There's some overlap between these properties. E.g., Exercise 1
tells us if a subset S is closed under scalar multiplication then S
contains the zero vector.
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Definition 3: A subspace of R”
A subspace of R" is ay subset V' of R" which is
@ closed under addition; that is,

for all v,w in V, the sum v+ w is in V, and

® closed under scalar multiplication; that is,

for all vin V and c in R, the product cv isin V.

v

Note 1 Exercise 1 +4ells use a Subspace muyst corfacn e, zero vectr.
Examples of subspaces

® The solution set to a homogeneous SLE (by Theorem 1).
® The set of 2-vectors whose entries sum to 0. i [,‘:;J for t T [’D\}

® The origin. line y="%

® A line through the origin.
® A plane through the origin.

Note: BU Thm1, 2 [/lomosemeo“s Solutien set Ts a SuB&che.
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Definition 4: The kernel of a matrix

Let A be an m x n-matrix. Then the kernel of A is the set of vectors v
such that Av = 0. That is,

ker(A) := {v in R" such that Av = 0}

The textbook calls this set the null space of A, denoted null(A).

This is just a homogeneous solution set with a different name!

The kernel of A is the same as the solution set to Av = 0.

Since Av =0 is a homogeneous SLE, the kernel of A is the solution set
to a homogeneous SLE. So we see from Theorem 1 that...

Theorem 2: Kernels are subspaces

The kernel of an m X n matrix is a subspace of R".




Kernel of a matrix
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1 -1
A= [—1 1 ]

Determine whether each of the following are in ker(A).
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Definition 5: The A-eigenspace of a matrix " lambkda

Let A be an n x n-matrix (square matrix) and A be a number. The
A-eigenspace of A, denoted by Ej(A), is the set of A-eigenvectors and the zero
vector. That is,

Ex(A) := {v in R" such that Av = \v}

Note: 0 is in Ex(A) even though 0 is not an eigenvector.

An eigenspace is just a homogeneous solution set with a different name!

The following three sets are the same.
@ The )\-eigenspace of A. Lecal|: A-tigenvectsrsS arve won-2ew
_ Colutions to (A -Ald)v="D
@® The kernel of the matrix A — Ald.
© The solution set of the equation Av = Av.

Since the \-eigenspace of a square matrix is the kernel of a matrix, it follows
from Theorem 2 that ...

Theorem 3: Eigenspaces are subspaces

The \-eigenspace of an n x n matrix is a subspace of R".
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So far, all of our subspaces are new perspectives on the same
construction: solutions to homogeneous SLEs. Let's give a
different source of subspaces.

Definition 6: The image of a matrix

Let A be an m x n-matrix. The image of A is the set of vectors v
which can be written as v = Aw for some vector w. |.e.

im(A) := {v in R™ such that v = Aw for some w in R"}

Theorem 4: Images are subspaces

The image of an m X n matrix must be a subspace of R™.




Image of a matrix
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Exercise 3

1 —1 A has Si2e 3xZ
A= |o 1 A has 2 voes
) 2 Co(uwmg
2 0

Determine whether each of the following are in im(A).
0 D1 o [0

i ; 9

LI e B

2 0 2 0 0

im(A) := {v in R™ such that v = Aw for some w in R"}
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Theorem 4: Images are subspaces

The image of an m x n matrix must be a subspace of R™.




