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Recall: Shapes of solutions

The solution set to a system of linear equations (SLE) must be one

of the following.

• An empty set

• A point

• A line

• A plane

• ...a shape in higher dimension?

This is a remarkably powerful classification!

• The shape is determined by its dimension,

• The shapes all share many nice properties (e.g. contain the

line through any pair of points).

no solution

oneunique solution

need one parameter dimension is I

need two parameters dimension is 2
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We will focus on the “shapes of solutions” for homogeneous system of linear
equations (SLE).

Recall (Definition): A system of linear equations (SLE) is called homogeneous
if the constants are zero; equivalently, the matrix equation is Av = ~0.

Shapes of solutions (homogeneous)

The solution set to a homogeneous SLE must be one of:

• The origin

• A line through the origin

• A plane through the origin

• ...a higher dimensional shape through the origin?

Why focus on homogeneous systems?

• The properties are nicer.

• The solution set to a general SLE turns out to be a translation of the
solution set to a homogeneous SLE.

requires one parameter dimension 1

requires two parameters dimension 2
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Goal

Define and study these general planar shapes through the origin.

We cannot use pictures or our geometric intuition for vectors of

height 4 or taller.

Our strategy

Find a few essential properties that characterize these planar

shapes, and then use those properties as a general definition.

That is, what properties distinguish the solution sets to

homogeneous SLEs from all other shapes?
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First, we introduce new terminology.

Definition 1: Subsets

Suppose A is a set and B is another set whose elements are all elements of A.
Then we say that B is a subset of A. We also say that A contains B.

Examples

• The set {1, 3} is a subset of {1, 2, 3}.
• The set {1, 3} is also a subset of the set of real numbers R.
• Any set V consisting some vectors of height 2 is subset of R2.

• The set R2 (all vectors of height 2) is a subset of R2.

• Every set is a subset of itself.

• The set R2 is not a subset of R3, because a vector of height 2 is not a
vector of height 3.

• The set {1, 2
5} is not a subset of Z (the set of integers).mot
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Definition 2: “closed under addition” and “closed under scalar

multiplication” for subsets

Suppose S is a subset of Rn
.

1 We say that S is closed under addition if ...

for all v,w in S , the sum v + w is in S

2 We say that S is closed under scalar multiplication if ...

for all v in S and c in R, the product cv is in S .

Exercise 1

Let S be a non-empty subset of Rn
which is closed under scalar

multiplication. Show that S must contain the zero vector.

a number C



Solution

Since S is non empty and S is a subset of IR

we know 5 contains at least one rector of height n

Let v be a vector in S

Since S is closed under scalar multiplication

by definition S contains Cv for each c in R

S contains every scalar multiple of v

Therefore or fog is in S

na the end

from now on we can use this fact without needing
to repeat the argument

Whenever we know that a subset of IR

is nonempty and is closed under scalar

multiplication we also know that this

subset contains the zero vector
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Theorem 1 (Properties of solution sets to homogeneous SLEs)

Let V be the solution set to a homogeneous system of linear

equations in n-variables. Then...

• V is a subset of Rn
; that is, the elements of V are n-vectors.

• V contains the zero vector.

• V is closed under addition; that is,

for all v,w in V , the sum v + w is in V , and

• V is closed under scalar multiplication; that is,

for all v in V and c in R, the product cv is in V .

There’s some overlap between these properties. E.g., Exercise 1

tells us if a subset S is closed under scalar multiplication then S
contains the zero vector.

MM
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Definition 3: A subspace of Rn

A subspace of Rn
is a non-empty subset V of Rn

which is

1 closed under addition; that is,

for all v,w in V , the sum v + w is in V , and

2 closed under scalar multiplication; that is,

for all v in V and c in R, the product cv is in V .

Examples of subspaces

• The solution set to a homogeneous SLE (by Theorem 1).

• The set of 2-vectors whose entries sum to 0.

• The origin.

• A line through the origin.

• A plane through the origin.

Note1 Exercise 1 tells us a subspace must contain the zero vector

EE fort ink
line y

x

Note ByThm1 a homogeneous solution set is a subspace
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Definition 4: The kernel of a matrix

Let A be an m ⇥ n-matrix. Then the kernel of A is the set of vectors v

such that Av = ~0. That is,

ker(A) := {v in Rn
such that Av = ~0}

The textbook calls this set the null space of A, denoted null(A).

This is just a homogeneous solution set with a di↵erent name!

The kernel of A is the same as the solution set to Av = ~0.

Since Av = ~0 is a homogeneous SLE, the kernel of A is the solution set

to a homogeneous SLE. So we see from Theorem 1 that...

Theorem 2: Kernels are subspaces

The kernel of an m ⇥ n matrix is a subspace of Rn
.
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Exercise 2

A :=


1 �1

�1 1

�

Determine whether each of the following are in ker(A).2

4
0

1

2

3

5

2

4
0

0

0

3

5

2

�2

� 
2

2

� 
0

0

�
a b c d e

Def 4 says V is in Ker A if Av and v in 1122

y
and og are not in kerCA because KerCA is a subsetofR2

since A has 2 Columns

c f 1 EI's44 1181 soEd is not in kercas

d ft f 221 17222 18 so 3 is in KerCA

e I 1 181 18 so 8 is in kerCA



Alternative answer to e Thin 2 says
We've seen that Ker A is a subspace of 1132

The kernel of
an min

Bydefinition every subspace of 1122 aomfast a

contains 8 So 8 is in KerCA

the end of alternative solution to e
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Definition 5: The �-eigenspace of a matrix

Let A be an n ⇥ n-matrix (square matrix) and � be a number. The
�-eigenspace of A, denoted by E�(A), is the set of �-eigenvectors and the zero
vector. That is,

E�(A) := {v in Rn such that Av = �v}

Note: ~0 is in E�(A) even though ~0 is not an eigenvector.

An eigenspace is just a homogeneous solution set with a di↵erent name!

The following three sets are the same.

1 The �-eigenspace of A.

2 The kernel of the matrix A� �Id.

3 The solution set of the equation Av = �v .

Since the �-eigenspace of a square matrix is the kernel of a matrix, it follows
from Theorem 2 that ...

Theorem 3: Eigenspaces are subspaces

The �-eigenspace of an n ⇥ n matrix is a subspace of Rn.

lambda
6

Recall X eigenvectors are non zero
solutions to CA Xld v 8
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So far, all of our subspaces are new perspectives on the same

construction: solutions to homogeneous SLEs. Let’s give a

di↵erent source of subspaces.

Definition 6: The image of a matrix

Let A be an m ⇥ n-matrix. The image of A is the set of vectors v

which can be written as v = Aw for some vector w. I.e.

im(A) := {v in Rm
such that v = Aw for some w in Rn}

Theorem 4: Images are subspaces

The image of an m ⇥ n matrix must be a subspace of Rm
.
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Exercise 3

A :=

2

4
1 �1

0 1

2 0

3

5

Determine whether each of the following are in im(A).


2

2

� 
0

0

� 2

4
0

1

2

3

5

2

4
1

0

0

3

5

2

4
0

0

0

3

5

A has size 3 2

A has 3 rows
2 Columns

a b c d e

in 1133 where V Aw for some win 1122

ya z and 8 are not in Tm A

Again the def says v is in imCA if we can find w in 1122

where Aw v

Strategy to do part Cc Cd Ces
For each vector v check whether Affy v has a solution



A w v

c Does µ f g E have a solution

0

If yes then I is in imCA

If no then fogy is
not in inCA

Row reduce the augmented matrix

It L III HII tI L
Note We are only trying to answer the question

Does f1 g E have a solution

Let's answer this question

Recall Once we have an augmented matrix in REF

the original SLE has a solution i.e consistent if andonly if

the REF augmented matrix has no leading 1 in the right column

does not have a leading 1 in the right column
so the SLE is consistent

This means

µ Xy q
has a solution

So 1 is in im lolz

Sanity check

Actually solve ftp lxy E

KIM.io lidEisoiEIEilCheckf fd



d Does A g v have a solution If yes v is in imCA

Does
1 g

have a solution
f is not in inca

Augmented matrix

iiiit i.io liittn t itikli t
Recall Once we have an augmented matrix in REF

if this REF augmented matrix has a leading 1 in the right column

we can conclude the original SLE has no solution inconsistent

has a leading 1 in the right column

So the original SLE is inconsistent

So

1 Xy has no solution

Therefore 11g
is not in im fg

e You can go through the
same process to check

whether A Xy r where v E has a solution

But by Thin 4 im A is a subspace of 1123
and we've seen that a subspace contains the zero vector

see Note 1 slide 8 13

so is in imCA


