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Abstract. A box-ball system is a collection of discrete time states. At each state, we
have a collection of countably many boxes with each integer from 1 to n assigned to a
unique box; the remaining boxes are considered empty. A permutation on n objects
gives a box-ball system state by assigning the permutation in one-line notation to the
first n boxes. After a finite number of steps, the system will reach a so-called soliton
decomposition which has an integer partition shape. We prove the following: if the
soliton decomposition of a permutation is a standard Young tableau or if its shape
coincides with its Robinson–Schensted (RS) partition, then its soliton decomposition and
its RS insertion tableau are equal. We study the time required for a box-ball system to
reach a steady state. We also generalize Fukuda’s single-carrier algorithm to algorithms
with more than one carrier.
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1 Introduction

A box-ball system is a collection of discrete time states. At each state, we have a collection
of countably many boxes with each integer from 1 to n assigned to a unique box; the
remaining boxes are considered “empty.” A permutation π ∈ Sn gives a box-ball system
state by assigning the permutation in one-line notation to the first n boxes. We apply a
BBS move in the forward direction (letting time t increase by 1) by moving each integer
from smallest to largest to its nearest empty space to the right. See Figure 1.

4 5 2 3 6 1

4 5 2 3 6 1

4 5 23 6 1

4 5 2 36 1

45 2 36 1

4 5 2 36 1

4 5 2 3 61

t = 0

t = 1

Figure 1: Performing a forward BBS move on π = 452361
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A soliton is a consecutive increasing sequence which is preserved by all subsequent BBS
moves. After a finite number of BBS moves, a box-ball system containing a configuration
π will reach a steady state, decomposing into solitons whose sizes are weakly increasing
from left to right, that is, forming an integer partition shape [8]. See Figure 2.
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Figure 2: Forward BBS moves for π = 452361. Steady-state is achieved at t = 3.

From such a state, we can construct the soliton decomposition of a permutation, denoted
SD, by stacking solitons. We obtain a tableau where each row is increasing but which may
or may not be standard. For example, the soliton decomposition of the box-ball system
containing π = 452361 shown in Figure 2 is

SD(π) =
1 3 6
2 5
4

.

The celebrated Robinson–Schensted (RS) insertion algorithm is a bijection
π 7→ (P(π), Q(π)) from Sn onto pairs of standard Young tableaux of size n [7]. The
tableau P(π) is called the insertion tableau or P-tableau of π, and the tableau Q(π) is called
the recording tableau or Q-tableau of π. For example, if π = 452361, then

P(π) =
1 3 6
2 5
4

, Q(π) =
1 2 5
3 4
6

The reading word of a Young tableau is the permutation formed by concatenating the rows
of the tableau from bottom to top. E.g., the tableau P(π) has reading word 425136.

1.1 BBS soliton partition and localized version of Greene’s theorem

Greene famously showed that the RS partition of a permutation and its conjugate record
the numbers of disjoint unions of increasing and decreasing sequences of the permu-
tation [3, Theorem 3.1]. Lewis, Lyu, Pylyavskyy, and Sen recently showed that the
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partition shape of the soliton decomposition of a permutation and its conjugate record
a pair of similar collections of permutation statistics [6, Lemma 2.1]. They studied an
alternate version of the box-ball system, so we reframe their result to match our box-ball
convention.

Definition 1.1. For π = π1 · · ·πn ∈ Sn and k ≥ 1, we define

Ik = max
π=u1|···|uk

k

∑
j=1

i(uj),

where i(uj) is the length of the longest increasing subsequence in uj and the maximum is
taken over ways of writing π as a concatenation u1 | · · · | uk of consecutive subsequences.
That is, we consider all ways to break π into k consecutive subsequences, sum the i(uj)
values for each way, and let Ik be the maximum sum. We also define

Dk = max
π=u1t···tuk

k

∑
j=1

d(uj),

where d(uj) = 1 + |{descents in uj}| and the maximum is taken over ways to write π as
the union of disjoint subsequences ui of π. Notice that we only require u1, . . . , uk to be
disjoint, not consecutive. We then form the sequences

λBBS(π) = (I1, I2 − I1, I3 − I2, . . . ) and µBBS(π) = (D1, D2 − D1, D3 − D2, . . . ).

Lemma 1.2 (Corollary of [6, Lemma 2.1]). If π ∈ Sn, then SD(π) has the shape of a partition
and this shape sh SD(π) is equal to λBBS(π). Furthermore, the conjugate of sh SD(π) is equal to
µBBS(π).

1.2 When the soliton decomposition and RS insertion tableau coincide

In general, the soliton decomposition and the RS insertion tableau of a permutation do
not coincide. We study the SD-equivalence classes of Sn using the notion of reading
words, standard tableaux, and Knuth moves.

First, we show that reading words of standard tableaux have well-behaved soliton
decomposition.

Theorem 1.3. A permutation r reaches its soliton decomposition at time t = 0 if and only if r is
the reading word of a standard Young tableau.

In particular, if r is the reading word of a tableau T, then SD(r) = T and so SD(r) =
T = P(r). This shows that there are at least as many SD-equivalence classes as standard
Young tableaux.
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In Section 2.1, we generalize Theorem 1.3 to standard skew tableaux.
Surprisingly, having a standard tableau for a soliton decomposition or having a soliton

decomposition shape which equals the RS partition shape is enough to guarantee that
the soliton decomposition and the RS insertion tableau coincide.

Theorem 1.4. Suppose π is a permutation. Then the following are equivalent:

1. SD(π) = P(π).

2. SD(π) is a standard tableau.

3. The shape of SD(π) equals the shape of P(π).

See Section 3 for a proof of Theorem 1.4. The proof that (3) implies (2) was suggested
to the authors by Darij Grinberg.

1.3 Three types of Knuth moves

The RS insertion tableau is preserved under any Knuth move [4]. In contrast, the soliton
decomposition is only preserved under certain types of Knuth moves.

Definition 1.5 (Knuth Moves). Suppose π, σ ∈ Sn and x < y < z.

• π and σ differ by a Knuth relation of the first kind (K1) if

π = π1 . . . yxz . . . πn and σ = π1 . . . yzx . . . πn

• π and σ differ by a Knuth relation of the second kind (K2) if

π = x1 . . . xzy . . . xn and σ = x1 . . . zxy . . . xn

• π and σ differ by Knuth relations of both kinds (KB) if

π = x1 . . . y1xzy2 . . . xn and σ = x1 . . . y1zxy2 . . . xn

where x < y1 < z and x < y2 < z.

Using the localized version of Greene’s Theorem given in Section 1.1, we prove a
partial characterization of the shape of SD in terms of types of Knuth moves.

Theorem 1.6. If π and w are related by a sequence of K1 or K2 moves (but not KB), then
sh SD(π) = sh SD(w). If π and w are related by a sequence of Knuth moves containing an odd
number of KB moves, then sh SD(π) 6= sh SD(w).

This allows us to use Knuth moves to find more permutations whose soliton decom-
position and RS insertion tableau coincide.
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Corollary 1.7 (Corollary of Theorem 1.4 and Theorem 1.6). Suppose π ∈ Sn is a sequence
of K1 or K2 moves (but not KB) away from the reading word of a standard tableau T. Then
SD(π) = P(π) = T. If π ∈ Sn is related to the reading word of a standard tableau by a sequence
of Knuth moves such that an odd number of the moves are KB moves, then SD(π) 6= P(π) = T.

Proposition 1.8. Suppose π ∈ Sn is the reading word of a standard tableau. Let π′ be a
permutation one K1 or K2 (but not KB) move away from π. Then π′ reaches its steady-state after
one BBS move.

2 Steady states

We study the steady-state configurations and the minimum time-steps to go from a
permutation to its soliton decomposition.

2.1 Standard tableaux of skew shapes

A BBS state can be represented as an array containing the integers from 1 to n as follows:
scanning the boxes from right to left, each string of increasing integers becomes a row in
the array. A string of k empty boxes indicates that the next row below should be shifted k
steps to the left. Note that this array has increasing rows but not necessarily increasing
columns; it also may not have a valid skew shape. The following is a generalization of
Theorem 1.3.

Theorem 2.1. A BBS configuration C is in steady-state if and only if the associated array has
rows of weakly decreasing length, and has increasing columns.

Note that in this case, the array will be a standard skew tableau.

Example 2.2 (of Theorem 2.1). Let π = 521643. The soliton decomposition SD(π) is the
tableau given in Figure 3. Note that C = . . . e52e6413ee is a steady-state configuration,
where we represent empty boxes with the symbol e. The configuration C yields the
standard skew tableau in Figure 4. Conversely, if given the skew tableau in Figure 4 (with
no knowledge of the original permutation), we may conclude the corresponding BBS
configuration, 52e6413, is in steady-state.

1 3
4
6
2
5

Figure 3: SD(π)

1 3
4
6

2
5

Figure 4: Resultant skew tableau
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2.2 Permutations with n–3 time steps

We use the RS correspondence to associate a permutation in Sn to each standard tableau
of shape (n− 3, 2, 1) and show that its box-ball steady-state value is n− 3. We conjecture
that all other permutations in Sn have steady-state value smaller than n− 3.

Definition 2.3. If n ≥ 5, let Q0 := Q0(n) denote the tableau

1 2 . . . n− 2 n− 1

3 4

n

.

Let Sn(Q0) be the set of permutations π ∈ Sn such that its recording tableau Q(π) is
equal to Q0.

Example 2.4. For n = 5, the five permutations of this set are the following.

45132 25143 35142 45231 35241

For n = 6, the sixteen permutations of this set are as follows.

451362
251463

351462
452361

352461
561243

261354
361254

461253
561342

261453
361452

461352
562341

362451
462351

Remark 2.5. It follows from Definition 2.3 that the RS algorithm induces a bijection from
Sn(Q0) to the set of standard tableaux of shape (n− 3, 2, 1), see [10].

Proposition 2.6. Every permutation in Sn(Q0) has steady-state value of n− 3.

The following conjecture has been computationally verified up to n = 10.

Conjecture 2.7. A permutation not in Sn(Q0) has steady-state value smaller than n− 3.

3 Proof of Theorem 1.4

3.1 Fukuda’s carrier algorithm as a sequence of Knuth moves

Some of our proofs use an algorithm called the carrier algorithm which was first introduced
in [9] and generalized in [2, Section 3.3]. The carrier algorithm is used to calculate the
t = k + 1 state of a BBS given the t = k state. In section 4.1, we introduce a multi-carrier
generalization of the carrier algorithm called the M-carrier algorithm (Algorithm 4.1).
When restricted to M = 1, our algorithm coincides with the original carrier algorithm.
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Example 3.1 (Carrier Algorithm [2]). We compute the t = 3 configuration of the box-
ball system from Figure 2 by applying the carrier algorithm to the t = 2 configuration.
Following Algorithm 4.1 for M := 1, we set B := eeee452ee136 . . . . The carrier algorithm
then proceeds as follows:

begin Process 1: insertion process

eeeeee eeee452ee136

e eeeeee eee452ee136
...

eeee eeeeee 452ee136

eeeee 4eeeee 52ee136

eeeeee 45eeee 2ee136
eeeeee4 25eeee ee136

eeeeee42 5eeeee e136

eeeeee425 eeeeee 136
...

eeeeee425eee 136eee

end insertion process

begin Process 2: flushing process

eeeeee425eee 136eee← e

eeeeee425eee1 36eeee← e

eeeeee425eee13 6eeeee← e

eeeeee425eee136 eeeeee

end flushing process

After each insertion, the sequence in the carrier is weakly increasing.

Remark 3.2 ([2, Remark 4]). The carrier algorithm can be viewed as a sequence of Knuth
moves (if we think of the elements in and to the left of the carrier as a single sequence.)
Consider the insertion of p into the carrier. If the carrier contains a number greater than
p, then the insertion process is equivalent to applying a sequence of K1 moves

· · ·Cpz1 · · · zl−1zl p

· · ·Cpz1 · · · zl−1pzl
...

· · ·Cp pz1 · · · zl−1zl

followed by a sequence of K2 moves:

x1 · · · xm−1xmCp p · · ·
x1 · · · xm−1Cpxm p · · ·

...
Cp x1 · · · xm−1xm p · · · .
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Otherwise, if p is greater than or equal to every element in the carrier, we apply the trivial
transformation:

x · · · p

x · · · p .

Lemma 3.3 ([2, Theorem 3.1]). The RS insertion tableau is a conserved quantity under the time
evolution of the BBS, that is, it is preserved under each BBS move.

3.2 Soliton decompositions and RSK tableaux

The following gives a characterization of permutations whose soliton decompositions are
equal to their RS insertion tableaux.

Theorem 1.4. Let π be a permutation. Then the following are equivalent:

1. SD(π) = P(π).

2. SD(π) is a standard tableau.

3. the shape of SD(π) equals the shape of P(π).

Lemma 3.4 (Due to Darij Grinberg). Suppose S is a row-strict tableau of a partition, that is,
every row is increasing (with no restrictions on the columns). Let r be the reading word of the
tableau S. Let P(r) be the RS insertion tableau of r. If the shape of S equals the shape of P(r), then
S is standard.

Proof of Theorem 1.4. Certainly (1) implies (2) and (3). First, we show that (2) implies (1).
Suppose that SD(π) is a standard tableau. Let r denote the reading word of SD(π). We
know that r is the order in which the elements of π are configured once we reach a
steady state. By Lemma 3.3, P(π) = P(r). Since r is the reading word of SD(π), we have
P(r) = SD(π) by Theorem 1.3. Therefore P(π) = SD(π).

Next, we show that (3) implies (2). Suppose that the shape of SD(π) equals the
shape of P(π). Let r be the reading word of SD(π). Lemma 3.3 tells us that the RSK
insertion tableau is preserved under a sequence of box-ball moves, so P(π) = P(r) and, in
particular, sh P(π) = sh P(r). By assumption, we have sh SD(π) = sh P(r). Since SD(π)
is a row-strict tableau and r is the reading word of SD(π), Lemma 3.4 tells us that SD(π)
is standard.

4 Multi-carrier algorithms

In this section, we give insertion algorithms that can help us study steady-states and
soliton decompositions.
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4.1 M-carrier algorithm

In this section, we define the M-carrier algorithm which is equivalent to performing the
carrier algorithm M times (Proposition 4.3). In addition to improving the efficiency of
the box-ball system calculations, the M-carrier algorithm enables us to compare the RSK-
insertion algorithm and the box-ball system more directly. Given a large enough M, the
M-carrier algorithm gives us an RSK-like insertion algorithm which sends a permutation
to its soliton decomposition.

Algorithm 4.1 (The M-carrier algorithm).

1: begin M-carrier algorithm
2: Set e := n + 1
3: Set B := the t = k configuration of the BBS, replacing empty boxes with e’s, so

that the first (leftmost) element of B is the integer in the first (leftmost) non-empty
box in the configuration and the last (rightmost) element of B is the integer in the
last (rightmost) non-empty box of the configuration at time k.

4: Denote Bi as the ith leftmost element of B and let there be ` elements of B.
5: Fill M adjacent “carriers”—depicted —with n copies of e.
6: Denote this string of carriers C
7: Denote the rightmost carrier c1, and in general, the jth rightmost carrier cj.
8: Write B to the right of C
9: begin Process 1: insertion process

10: for all i in {1, 2, . . . , `} do
11: Set p := Bi
12: begin element ejection process
13: for all j in {1, 2, . . . , M} do
14: if an element in cj is larger than p then
15: Set s := the smallest element in cj larger than p
16: Eject s by replacing it with p and setting p := s
17: else
18: Set s := the smallest element in cj.
19: Remove s from cj
20: I Note: There are now n− 1 elements in cj.
21: Place p in the rightmost location in cj.
22: I Note: There are now n elements in cj.
23: Set p := s
24: end if
25: if j = M then
26: Place p to the left of C
27: end if
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28: end for
29: end element ejection process
30: end for
31: end Process 1: insertion process
32: begin Process 2: flushing process
33: while there are non-e elements in C do
34: Set p := e. Perform the element ejection process
35: end while
36: end Process 2: flushing process
37: I Note: The elements to the left of C correspond to the t = k + 1 state of the

BBS
38: end M-carrier algorithm

Example 4.2. We apply the M-carrier algorithm (with M = 3) to π = 361425.

begin Process 1: insertion process
eeeeee eeeeee eeeeee 361425

e eeeeee eeeeee 3eeeee 61425

ee eeeeee eeeeee 36eeee 1425

eee eeeeee 3eeeee 16eeee 425

eeee eeeeee 36eeee 14eeee 25

eeeee 6eeeee 34eeee 12eeee 5

eeeee6 3eeeee 4eeee 125eee

end insertion process

begin Process 2: flushing process
eeeee6 3eeeee 4eeeee 125eee← e

eeeee6e 34eeee 1eeeee 25eeee← e

eeeee6e3 4eeeee 12eeee 5eeeee← e

eeeee6e34 eeeeee 125eee eeeeee← e

eeeee6e34e 1eeeee 25eeee eeeeee← e

eeeee6e34ee 12eeee 5eeeee eeeeee← e

eeeee6e34eee 125eee eeeeee eeeeee← e

eeeee6e34eee1 25eeee eeeeee eeeeee← e

eeeee6e34eee12 5eeeee eeeeee eeeeee← e

eeeee6e34eee125 eeeeee eeeeee eeeeee

end flushing process

Proposition 4.3. Performing the M-carrier algorithm (with M carriers) is equivalent to perform-
ing the 1-carrier algorithm M times. In particular, if π ∈ Sn, applying algorithm 4.1 to π yields
the box-ball configuration of π at t = M.

Proof. Ejecting an element from a carrier ci and then immediately inserting it into the
next carrier ci+1 is equivalent to ejecting all the elements from ci, forming a sequence and
then inserting that sequence into ci+1.
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4.2 Infinite-carrier algorithm

We define the infinite-carrier algorithm to be the same as Algorithm 4.1, but with an infinite
number of carriers, so an entry is always in some carrier at every step. (This is in contrast
to the M-carrier algorithm, where an entry may be ejected to the left of the carriers.)
Unfortunately, it’s not always possible to obtain a soliton decomposition this way.

Theorem 4.4. Let w be a permutation and let σ1, σ2, . . . σ` be the solitons of a box-ball system
containing w as a configuration.
(1) In the infinite carrier algorithm, for each soliton σi, there exists a smallest positive number ri
such that, after inserting all the elements of w and ri copies of e, the soliton σi is completely and
solely contained in a carrier.
(2) Let s1, s2, . . . , s` be the lengths of the respective solitons. If gcd(si, sj) divides ri − rj for all i
and j, then there exists a unique number of e’s (mod lcm{s1, s2, . . . , s`}) such that the infinite
carrier algorithm puts the solitons of a permutation in separate carriers (i.e., the infinite-carrier
algorithm yields the box-ball soliton decomposition of w).

Example 4.5. Let π = 24513. The box-ball system containing π has solitons 135 and 24,
which have lengths 3 and 2 respectively (with lcm{3, 2} = 6). Since all the (pairwise)
greatest common divisors of the soliton lengths are 1, there exists a unique number of
e’s (mod6) such that the infinite carrier algorithm puts the solitons of a permutation in
separate carriers. When one completes the infinite-carrier algorithm, after all entries of π

and 0 + 6k of e’s are inserted, the solitons of π are sorted into separate carriers:

begin Process 1: insertion process
... eeeee eeeee 24513

... eeeee 2eeee 4513

... eeeee 24eee 513

... eeeee 245ee 13

... eeeee 2eeee 145ee 3

... eeeee 24eee 135ee

end insertion process

begin Process 2: flushing process
... eeeee eeeee 24eee 135ee← e #1

... eeeee 2eeee 14eee 35eee← e #2

... eeeee 24eee 13eee 5eeee← e #3

... eeeee 2eeee 4eeee 135ee eeeee← e #4

... eeeee 24eee 1eeee 35eee eeeee← e #5

... eeeee 2eeee 4eeee 13eee 5eeee eeeee← e #6

... eeeee 24eee eeeee 135ee eeeee eeeee← e #7
...

...

end flushing process
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