

Sec 8.3 Convex combinations

(Recall from Sec 8.1)

Def • An affine combination of vectors $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p$ in \mathbb{R}^n

is a linear combination $c_1\vec{v}_1 + \dots + c_p\vec{v}_p$

such that $\underbrace{c_1 + c_2 + \dots + c_p = 1}$

the weights sum up to 1

- The affine hull (or affine span) of a set S is the set of all affine combinations of points in S .

(Notation: $\text{aff } S$)

Def • An convex combination of vectors $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_p$ in \mathbb{R}^n

is a linear combination $c_1\vec{v}_1 + \dots + c_p\vec{v}_p$

such that $\underbrace{c_1 + c_2 + \dots + c_p = 1}$

the weights sum up to 1

AND all c_1, c_2, \dots, c_p are nonnegative

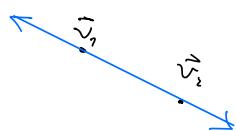
- The convex hull of a set S is the set of all convex combinations of points in S . (Notation: $\text{conv } S$)

Note: • $\text{aff } \{\vec{v}\}$ is just $\{\vec{v}\}$,

$\text{conv } \{\vec{v}\}$ is also $\{\vec{v}\}$

- $\text{aff } \{\vec{v}_1, \vec{v}_2\}$ is $\{ \underbrace{\text{affine combinations of } \vec{v}_1 \text{ and } \vec{v}_2}_{(1-t)\vec{v}_1 + t\vec{v}_2 \mid t \text{ in } \mathbb{R}} \mid t \text{ in } \mathbb{R} \}$,
(distinct points)

the line containing both \vec{v}_1, \vec{v}_2 .



- $\text{conv } \{\vec{v}_1, \vec{v}_2\}$ is $\{ \underbrace{\text{convex combinations of } \vec{v}_1 \text{ and } \vec{v}_2}_{(1-t)\vec{v}_1 + t\vec{v}_2 \mid t \text{ between 0 and 1}} \mid t \text{ between 0 and 1} \}$,

Because the weights in a convex combination are nonnegative

the line segment between \vec{v}_1 and \vec{v}_2 , denoted $\overline{v_1 v_2}$.

Recall (Sec 8.2 "Unique representation thm" & "barycentric coordinates")

If S is affinely independent and \vec{p} is in $\text{aff } S$

then \vec{p} can be written uniquely as an affine combination of S .

The weights are called barycentric coordinates of \vec{p} .

Note: \vec{p} is in $\text{conv } S$ iff the barycentric coordinates of \vec{p} are nonnegative.

EXAMPLE 1

Let

$$\mathbf{v}_1 = \begin{bmatrix} 3 \\ 0 \\ 6 \\ -3 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} -6 \\ 3 \\ 3 \\ 0 \end{bmatrix}, \quad \mathbf{v}_3 = \begin{bmatrix} 3 \\ 6 \\ 0 \\ 3 \end{bmatrix}, \quad \mathbf{p}_1 = \begin{bmatrix} 0 \\ 3 \\ 3 \\ 0 \end{bmatrix}, \quad \mathbf{p}_2 = \begin{bmatrix} -10 \\ 5 \\ 11 \\ -4 \end{bmatrix},$$

Let $S = \{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ & note S is an orthogonal set.

Determine whether \vec{p}_1, \vec{p}_2 are in $\text{Span } S$, $\text{aff } S$, & $\text{conv } S$.

Sol: Let $W = \text{Span } S$

Recall that $\text{proj}_W \vec{p}$ is the closest point in W to \vec{p} ,

so \vec{p} is in W iff $\text{proj}_W \vec{p} = \vec{p}$.

For \vec{p}_1 :

$$\text{proj}_W \vec{p}_1 = \text{proj}_{\vec{v}_1} \vec{p}_1 + \text{proj}_{\vec{v}_2} \vec{p}_1 + \text{proj}_{\vec{v}_3} \vec{p}_1$$

(we can do this because $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ is an orthogonal basis

$$\begin{aligned} \text{proj}_W \vec{p}_1 &= \frac{\mathbf{p}_1 \cdot \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_1} \mathbf{v}_1 + \frac{\mathbf{p}_1 \cdot \mathbf{v}_2}{\mathbf{v}_2 \cdot \mathbf{v}_2} \mathbf{v}_2 + \frac{\mathbf{p}_1 \cdot \mathbf{v}_3}{\mathbf{v}_3 \cdot \mathbf{v}_3} \mathbf{v}_3 \\ &= \frac{18}{54} \mathbf{v}_1 + \frac{18}{54} \mathbf{v}_2 + \frac{18}{54} \mathbf{v}_3 \end{aligned}$$

$$= \frac{1}{3} \begin{bmatrix} 3 \\ 0 \\ 6 \\ -3 \end{bmatrix} + \frac{1}{3} \begin{bmatrix} -6 \\ 3 \\ 3 \\ 0 \end{bmatrix} + \frac{1}{3} \begin{bmatrix} 3 \\ 6 \\ 0 \\ 3 \end{bmatrix} = \begin{bmatrix} 0 \\ 3 \\ 3 \\ 0 \end{bmatrix} = \mathbf{p}_1$$

This shows \vec{p}_1 is in $W = \text{Span } S$

Since the coefficients sum up 1, \vec{p}_1 is in $\text{aff } S$.

and are nonnegative, \vec{p}_1 is in $\text{conv } S$.

$$\begin{aligned}
 \text{For } \vec{P}_2: \quad \text{proj}_{\mathcal{W}} \vec{P}_2 &= \frac{\vec{P}_2 \cdot \vec{v}_1}{\vec{v}_1 \cdot \vec{v}_1} \vec{v}_1 + \frac{\vec{P}_2 \cdot \vec{v}_2}{\vec{v}_2 \cdot \vec{v}_2} \vec{v}_2 + \frac{\vec{P}_2 \cdot \vec{v}_3}{\vec{v}_3 \cdot \vec{v}_3} \vec{v}_3 \\
 &= \frac{48}{54} \vec{v}_1 + \frac{108}{54} \vec{v}_2 + \frac{-12}{54} \vec{v}_3 \\
 &= \frac{8}{9} \begin{bmatrix} 3 \\ 0 \\ 6 \\ -3 \end{bmatrix} + 2 \begin{bmatrix} -6 \\ 3 \\ 3 \\ 0 \end{bmatrix} - \frac{2}{9} \begin{bmatrix} 3 \\ 6 \\ 0 \\ 3 \end{bmatrix} \\
 &= \begin{bmatrix} * \\ 0 + 2(3) - \frac{12}{9} \\ * \\ * \end{bmatrix} \neq \vec{P}_2
 \end{aligned}$$

So \vec{P}_2 is not in $\mathcal{W} = \text{Span } S$.

Thus \vec{P}_2 cannot be in $\text{aff } S$ or $\text{conv } S$.

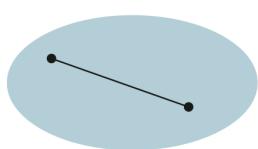
Recall (Sec 8.1): A set S is affine if:

$\vec{p}, \vec{q} \in S$ implies the entire line through $\vec{p} \& \vec{q}$ is in S .

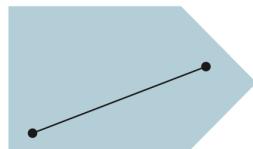
DEFINITION

A set S is **convex** if for each $\mathbf{p}, \mathbf{q} \in S$, the line segment $\overline{\mathbf{pq}}$ is contained in S .

Intuitively, a set S is convex if every two points in the set can “see” each other without the line of sight leaving the set. Figure 1 illustrates this idea.



Convex



Convex

Not convex

THEOREM 7

A set S is convex if and only if every convex combination of points of S lies in S . That is, S is convex if and only if $S = \text{conv } S$.

THEOREM 8

The intersection of two subspaces is a subspace
— “— of two convex sets is a convex set
— “— of two affine sets is an affine set

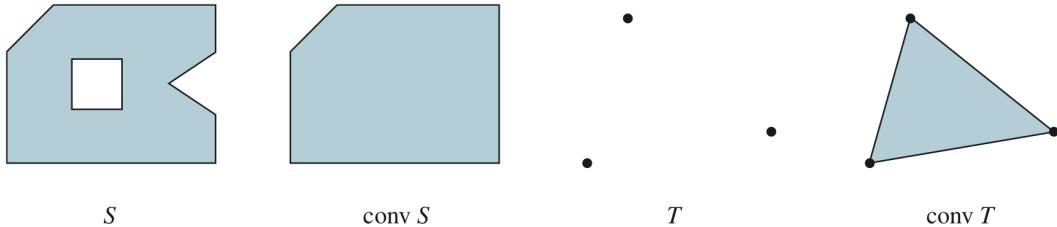
THEOREM 9

For any set S , the convex hull of S is the intersection of all the convex sets that contain S .

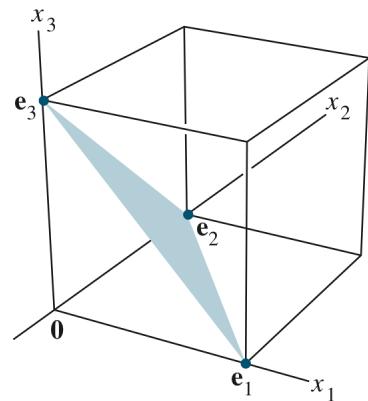
i.e. $\text{conv } S$ is the “smallest” convex set containing S .

EXAMPLE 2

a. The convex hulls of sets S and T in \mathbb{R}^2 are shown below.



b. Let S be the set consisting of the standard basis for \mathbb{R}^3 , $S = \{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$. Then $\text{conv } S$ is a triangular surface in \mathbb{R}^3 , with vertices $\mathbf{e}_1, \mathbf{e}_2$, and \mathbf{e}_3 . See Figure 2. ■



If \vec{p} is in the convex hull of S , then (by def)
 \vec{p} is a convex combination of points of S .

How many points are needed for this combination?

THEOREM 10

(Caratheodory) If S is a nonempty subset of \mathbb{R}^n , then every point in $\text{conv } S$ can be expressed as a convex combination of $n + 1$ or fewer points of S .

Illustration of proof (using an example)

EXAMPLE 4 Let

(Here $n=2$)

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 2 \\ 3 \end{bmatrix}, \quad \mathbf{v}_3 = \begin{bmatrix} 5 \\ 4 \end{bmatrix}, \quad \mathbf{v}_4 = \begin{bmatrix} 3 \\ 0 \end{bmatrix} \quad \text{and } S = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\}.$$

$$\text{Let } \mathbf{p} = \frac{1}{4}\mathbf{v}_1 + \frac{1}{6}\mathbf{v}_2 + \frac{1}{2}\mathbf{v}_3 + \frac{1}{12}\mathbf{v}_4 = \begin{bmatrix} \frac{10}{3} \\ \frac{5}{2} \end{bmatrix}$$

Use the procedure in the proof of Caratheodory's Theorem to express \mathbf{p} as a convex combination of three points of S .

$n+1$

The set $\{\tilde{\mathbf{v}}_1, \tilde{\mathbf{v}}_2, \tilde{\mathbf{v}}_3, \tilde{\mathbf{v}}_4\}$ of homogeneous forms in \mathbb{R}^3 is lin. dependent (since every basis of \mathbb{R}^3 has 3 elts), so by Thm 5 (Sec 8.2)

S is affinely dependent.

Find an affine dependence relation $c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + c_3\mathbf{v}_3 + c_4\mathbf{v}_4 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ (using Sec 8.2):

First, find a linear dependence relation $c_1\tilde{\mathbf{v}}_1 + c_2\tilde{\mathbf{v}}_2 + c_3\tilde{\mathbf{v}}_3 + c_4\tilde{\mathbf{v}}_4 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$:

$$M = \begin{bmatrix} \tilde{\mathbf{v}}_1 & \tilde{\mathbf{v}}_2 & \tilde{\mathbf{v}}_3 & \tilde{\mathbf{v}}_4 \\ 1 & 2 & 5 & 3 \\ 0 & 3 & 4 & 0 \\ 1 & 1 & 1 & 1 \end{bmatrix} \xrightarrow{\text{row reduce}} \begin{bmatrix} 4 & 0 & 0 & 5 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 4 & 3 \end{bmatrix}$$

pivot
cols ↓ free column

$$\begin{aligned} 4c_1 + 5c_4 &= 0 \\ c_2 - c_4 &= 0 \\ 4c_3 + 3c_4 &= 0 \\ c_4 &\text{ can be any number.} \end{aligned}$$

Choose any nonzero number for c_4 , say $c_4 = 4$

Then $4c_1 = -5(4) \Rightarrow c_1 = -5$

$$c_2 = 4$$

$$4c_3 = -3(4) \Rightarrow c_3 = -3$$

So $-5v_1 + 4v_2 - 3v_3 + 4v_4 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ is an affine dependence of S

Affine dependence means the coefficients sum to 0, so some will be positive.

Take the points v_2 and v_4 (whose coeffs are positive),

Compute the ratio of the coefficients in eq for \tilde{P} :

$$\frac{1}{4}v_1 + \frac{1}{6}v_2 + \frac{1}{2}v_3 + \frac{1}{12}v_4 = \begin{bmatrix} \frac{10}{3} \\ \frac{5}{2} \end{bmatrix}$$

and $-5v_1 + 4v_2 - 3v_3 + 4v_4 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ the affine dependence relation.

$$\text{For } v_2: \frac{\frac{1}{6}}{\frac{1}{4}} = \frac{1}{6} \cdot \frac{1}{4} = \frac{1}{24} \quad \text{For } v_4: \frac{\frac{1}{12}}{\frac{1}{4}} = \frac{1}{12} \cdot \frac{1}{4} = \frac{1}{48}$$

$\frac{1}{48}$ is the smaller of these

Subtract:

$$\frac{1}{4}v_1 + \frac{1}{6}v_2 + \frac{1}{2}v_3 + \frac{1}{12}v_4 = \begin{bmatrix} 10/3 \\ 5/2 \end{bmatrix}$$

$$\frac{1}{48} \left(-5v_1 + 4v_2 - 3v_3 + 4v_4 \right) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\left(\frac{1}{4} + \frac{5}{48} \right) v_1 + \left(\frac{1}{6} - \frac{4}{48} \right) v_2 + \left(\frac{1}{2} + \frac{3}{48} \right) v_3 + \underbrace{\left(\frac{1}{12} - \frac{4}{48} \right) v_4}_{=0} = \begin{bmatrix} 10/3 \\ 5/2 \end{bmatrix}$$

$$\frac{17}{48}v_1 + \frac{4}{48}v_2 + \frac{27}{48}v_3 = \begin{bmatrix} 10/3 \\ 5/2 \end{bmatrix}$$

is a convex combination of 3 points of S

— the end —

Practice Problems

- Let $\mathbf{v}_1 = \begin{bmatrix} 6 \\ 2 \\ 2 \end{bmatrix}$, $\mathbf{v}_2 = \begin{bmatrix} 7 \\ 1 \\ 5 \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} -2 \\ 4 \\ -1 \end{bmatrix}$, $\mathbf{p}_1 = \begin{bmatrix} 1 \\ 3 \\ 1 \end{bmatrix}$, and $\mathbf{p}_2 = \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}$, and let $S = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$. Determine whether \mathbf{p}_1 and \mathbf{p}_2 are in $\text{conv } S$.
- Let S be the set of points on the curve $y = 1/x$ for $x > 0$. Explain geometrically why $\text{conv } S$ consists of all points on and above the curve S .

Solutions to Practice Problems

- The points \mathbf{v}_1 , \mathbf{v}_2 , and \mathbf{v}_3 are not orthogonal, so compute

$$\mathbf{v}_2 - \mathbf{v}_1 = \begin{bmatrix} 1 \\ -1 \\ 3 \end{bmatrix}, \mathbf{v}_3 - \mathbf{v}_1 = \begin{bmatrix} -8 \\ 2 \\ -3 \end{bmatrix}, \mathbf{p}_1 - \mathbf{v}_1 = \begin{bmatrix} -5 \\ 1 \\ -1 \end{bmatrix}, \text{ and } \mathbf{p}_2 - \mathbf{v}_1 = \begin{bmatrix} -3 \\ 0 \\ -1 \end{bmatrix}$$

Augment the matrix $[\mathbf{v}_2 - \mathbf{v}_1 \ \mathbf{v}_3 - \mathbf{v}_1]$ with both $\mathbf{p}_1 - \mathbf{v}_1$ and $\mathbf{p}_2 - \mathbf{v}_1$, and row reduce:

$$\left[\begin{array}{cccc} 1 & -8 & -5 & -3 \\ -1 & 2 & 1 & 0 \\ 3 & -3 & -1 & -1 \end{array} \right] \sim \left[\begin{array}{cccc} 1 & 0 & \frac{1}{3} & 1 \\ 0 & 1 & \frac{2}{3} & \frac{1}{2} \\ 0 & 0 & 0 & -\frac{5}{2} \end{array} \right]$$

The third column shows that $\mathbf{p}_1 - \mathbf{v}_1 = \frac{1}{3}(\mathbf{v}_2 - \mathbf{v}_1) + \frac{2}{3}(\mathbf{v}_3 - \mathbf{v}_1)$, which leads to $\mathbf{p}_1 = 0\mathbf{v}_1 + \frac{1}{3}\mathbf{v}_2 + \frac{2}{3}\mathbf{v}_3$. Thus \mathbf{p}_1 is in $\text{conv } S$. In fact, \mathbf{p}_1 is in $\text{conv } \{\mathbf{v}_2, \mathbf{v}_3\}$.

The last column of the matrix shows that $\mathbf{p}_2 - \mathbf{v}_1$ is not a linear combination of $\mathbf{v}_2 - \mathbf{v}_1$ and $\mathbf{v}_3 - \mathbf{v}_1$. Thus \mathbf{p}_2 is not an affine combination of \mathbf{v}_1 , \mathbf{v}_2 , and \mathbf{v}_3 , so \mathbf{p}_2 cannot possibly be in $\text{conv } S$.

An alternative method of solution is to row reduce the augmented matrix of homogeneous forms:

$$[\tilde{\mathbf{v}}_1 \ \tilde{\mathbf{v}}_2 \ \tilde{\mathbf{v}}_3 \ \tilde{\mathbf{p}}_1 \ \tilde{\mathbf{p}}_2] \sim \left[\begin{array}{ccccc} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & \frac{1}{3} & 0 \\ 0 & 0 & 1 & \frac{2}{3} & 0 \\ 0 & 0 & 0 & 0 & 1 \end{array} \right]$$

- If \mathbf{p} is a point above S , then the line through \mathbf{p} with slope -1 will intersect S at two points before it reaches the positive x - and y -axes.