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DEFINITION A set S is convex if for each p, q € S, the line segment pq is contained in S.

Intuitively, a set S is convex if every two points in the set can “see” each other
without the line of sight leaving the set. Figure 1 illustrates this idea.
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THEOREM 7

A set § is convex if and only if every convex combination of points of S liesin S.

That is, S is convex if and only if S = conv S.
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THEOREM 8

The interseckien of o0 Subx?aaag s a Subs pace
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THEOREM 9

For any set S, the convex hull of S is the intersection of all the convex sets that
contain S.
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EXAMPLE 2

a. The convex hulls of sets S and 7 in R? are shown below.

S conv § T conv T

b. Let S be the set consisting of the standard basis for R, S = {e, e,, e3}. Then conv S
is a triangular surface in R3, with vertices e, e,, and e3. See Figure 2. [ |
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THEOREM 10

(Caratheodory) If S is a nonempty subset of R”, then every point in conv S can
be expressed as a convex combination of n 4 1 or fewer points of S.
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Use the procedure in the proof of Caratheodory’s Theorem to express p as a convex
combination of three points of S.
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Practice Problems

6 7 -2 1 3
1. Letvi= |2 |, v, =| 1], vz = 4 [,pp=|3 |, and p, = | 2 |, and let
2 5 —1 1 1

S = {vy, v2, v3}. Determine whether p, and p, are in conv S.

2. Let S be the set of points on the curve y = 1/x for x > 0. Explain geometrically
why conv S consists of all points on and above the curve S.

Solutions to Practice Problems

1. The points vy, v, and v3 are not orthogonal, so compute

—8 -5 -3
vo—vi=| -1 |, vz—v = 2 (,p—v = I |,andp, —v| = 0
-3 —1 —1

Augment the matrix [ v, —v; v3 — vy ] with both p; — v, and p, — v;, and row
reduce:

1
1 -8 —5 -3 o 5 1
2 1
-1 2 1 0f~{0 1 2 !
3 -3 -1 -1 0 0 0 -3

The third column shows that p; — v; = %(Vz —vy) + %(V3 —vy), which leads to
p; = 0v; + %vz + %v3. Thus p, is in conv S. In fact, p, is in conv {v,, v3}.

The last column of the matrix shows that p, — v; is not a linear combination of
v, — vy and v3 — v;. Thus p, is not an affine combination of vy, v,, and v3, so p,
cannot possibly be in conv .

An alternative method of solution is to row reduce the augmented matrix of
homogeneous forms:

1 0 0 0 0]
S <« o 0o 1 0 3 0
[Vl V2 V3 Py Pz]“ )

o 0 1 2 0

(0 0 0 0 1]

2. If pis apoint above S, then the line through p with slope —1 will intersect .S at two
points before it reaches the positive x- and y-axes.



