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THEOREM 5

Given an indexed set S = {vy,...,v,} in R”, with p > 2, the following state-
ments are logically equivalent. That is, either they are all true statements or they
are all false.

a. S is affinely dependent.

b. One of the points in S is an affine combination of the other points in S.

c. Theset {vy —vy,...,v, —vi}in R" is linearly dependent.
d. The set {Vi,...,V,} of homogeneous forms in R"*! is linearly dependent.
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EXAMPLE 2 letvi=|3|,va=| 7 |[,va= |4 |,and S = {vy, V2, V3}.
7 6.5 7
Determine whether S is affinely independent.
1 —1
SOLUTION Compute v, —v; = 4 and v3 —v; = 1 |. These two points
-5 0

are not multiples and hence form a linearly independent set, S’. So all statements in
Theorem 5 are false, and S is affinely independent. Figure 2 shows S and the translated
set S’. Notice that Span S’ is a plane through the origin and aff S is a parallel plane
through vy, v,, and v3. (Only a portion of each plane is shown here, of course.) |
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FIGURE 2 An affinely independent set
{V] , Vo, V3}.



EXAMPLE 3 Letv, = | 3 4 14
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S={v,..., v4}. Is S affinely dependent?
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EXAMPLE 3 Letv;=|3]|,vo=| 7 |,v3=1| 4 |,andvy=| 14 |, and let
7 6.5 7 6
S = {vy,...,v4}. Is S affinely dependent? B
[ 1 [ —1 -1
SOLUTION Computev, —v| = 4 |,v3—v; = 1 |,andvy—vy = | 11 |,
-5 0 -1
and row reduce the matrix: - B
1 -1 -1 1 -1 -1 1 -1 -1
4 1 11 |(~]0 5 I5|~(0 5 15
-5 0 -1 |0 =5 —15 0O 0 O

Recall from Section 4.5 (or Section 2.8) that the columns are linearly dependent be-
cause not every column is a pivot column; so v, — vy, v3 — vy, and v4 — v are linearly
dependent. By statement (c) in Theorem 5, {v{, v5, v3, v4} is affinely dependent. This
dependence can also be established using (d) in Theorem 5 instead of (c). |

The calculations in Example 3 show that v4 — v; is a linear combination of v, — v;
and v; — vy, which means that v, — vy is in Span {v, — vy, v — v;}. By Theorem 1 in
Section 8.1, vy is in aff {v{, v,, v3}. In fact, complete row reduction of the matrix in
Example 3 would show that

V4 — vV =2(va—vy) + 3(vz —vp) 5)
vy = —4v| + 2v, + 3v;3 (6)
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Thece COe—F.F?c[en-Fs are called ﬁ:££7ne coordirates [Df barycentric M of —Vz*)



égm” > Barycentric Coordinates
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Observe that (7) is equivalent to the single equation
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involving the homogeneous forms of the points. Row reduction of the augmented matrix
[Vi .-+ V& P]for (8) produces the barycentric coordinates of p.
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FIGURE 5 Barycentric coordinates
for points in aff {a, b, c}.
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[EKHM EXAMPLE 4 Leta= |:7:|,b = |:0:|,c = [3],andp = [3].F1ndthebarycen—
Ex ) tric coordinates of p determined by the affinely independent set {a, b, c}.

SOLUTION Row reduce the augmented matrix of points in homogeneous form, mov-
ing the last row of ones to the top to simplify the arithmetic:

i 1 3 9 57 [1 1 1 1
[a b ¢ p]=|7 0 3 3|~|1 3 9 5
1 1 1 1] |7 0 3 3

B 1

0 0 3

1

5

[0 0 1 3

i L1 5 =1 1 3
The coordinates are 7, 5, and 35,sop = ;a+ ;b + 3. ™



Barycentric Coordinates in Computer Graphics

When working with geometric objects in a computer graphics program, a designer may
use a “wire-frame” approximation to an object at certain key points in the process of
creating a realistic final image. For instance, if the surface of part of an object consists
of small flat triangular surfaces, then a graphics program can easily add color, lighting,
and shading to each small surface when that information is known only at the vertices.
Barycentric coordinates provide the tool for smoothly interpolating the vertex infor-
mation over the interior of a triangle. The interpolation at a point is simply the linear
combination of the vertex values using the barycentric coordinates as weights.

Colors on a computer screen are often described by RGB coordinates. A triple
(r, g, b) indicates the amount of each color—red, green, and blue—with the parameters
varying from 0 to 1. For example, pure red is (1,0, 0), white is (1, 1, 1), and black is
(0,0,0).

3 4 1 3
EXAMPLES Let vi=| 1|, va=|3 |, vs=|5|,and p=| 3 |. The
5 4 1 3.5

colors at the vertices vj, v, and v; of a triangle are magenta (1,0, 1), light magenta
(1,.4,1), and purple (.6,0, 1), respectively. Find the interpolated color at p. See
Figure 6.
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FIGURE 6 Interpolated colors.

SOLUTION First, find the barycentric coordinates of p. Here is the calculation using
homogeneous forms of the points, with the first step moving row 4 to row 1:

1 1 1 1 1 0 0 .25
[Vl ¥ W f)]~ 3 4 1 3010 1 0 .50
1 3 5 3 o o0 1 .25
5 4 1 35 0 0 O 0

So p = .25v| + .5v, + .25v;. Use the barycentric coordinates of p to make a linear
combination of the color data. The RGB values for p are

1 1 .6 .9 | red
2510 | 4+.50] 4 [+.25| 0| =] .2 | green |
1 1 1 1 | blue



