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The singular values of A are the square roots of the eigenvalues of A’A, denoted by
o1,...,0,, and they are arranged in decreasing order. That is, 0; = 4/A; for 1 <i < n.
By equation (#), the singular values of A are the lengths of the vectors Avy, ..., Av,.
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Numerical Notes

In some cases, the rank of A may be very sensitive to small changes in the entries
of A. The obvious method of counting the number of pivot columns in A does
not work well if A is row reduced by a computer. Roundoff error often creates an
echelon form with full rank.

In practice, the most reliable way to estimate the rank of a large matrix A is to
count the number of nonzero singular values. In this case, extremely small nonzero
singular values are assumed to be zero for all practical purposes, and the effective
rank of the matrix is the number obtained by counting the remaining nonzero
singular values.!

The Singular Value Decomposition

The decomposition of A4 involves an m x n “diagonal” matrix X of the form
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EXAMPLE 4 Find a singular value decompositionof A = | =2 2
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SOLUTION  First, compute A4 = [_9

_g :| The eigenvalues of A7A are 18 and 0,

with corresponding unit eigenvectors

_[ w2l o, vz
V) = —l/\/i_. V) = l/ﬁ

These unit vectors form the columns of V':

_ | yv2 o2
V=[v VZ]__—I/\/E l/ﬁi|

The singular values are o) = /18 = 34/2 and o, = 0. Since there is only one nonzero
singular value, the “matrix” D may be written as a single number. That is, D = Bﬁ.
The matrix X is the same size as A, with D in its upper left corner:

FIGURE 3

D 0 372 0
X=| 0 0]= 0 0
0 0 0 0
To construct U, first construct Av; and Av,:
2/3/2 0
Avi=| —4/V2 |, Av=|0
4/2 0
As a check on the calculations, verify that |Av,|| = oy = 3«/5. Of course, Av, =0
because || Av,|| = 02 = 0. The only column found for U so far is
1 1/3
u = —AV1 = —2/3
32 2/3

The other columns of U are found by extending the set {u, } to an orthonormal basis for
R3. In this case, we need two orthogonal unit vectors u, and uj that are orthogonal to u;.
(See Figure 3.) Each vector must satisfy ulrx = 0, which is equivalent to the equation
X1 — 2x2 + 2x3 = 0. A basis for the solution set of this equation is

2 -2
W = 1|, w,=
0 1

(Check that w; and w, are each orthogonal to u;.) Apply the Gram—Schmidt process
(with normalizations) to {w;, wz}, and obtain

2/+/5 —2//45
wu=|1/J/5|. w= 4//45
0 5/\45

Finally, set U = [u; w; u3],take X and V7 from above, and write

1 -1 1/3 2//5 —2/V/457[3v2 0
A=|-2 2|=|-2/3 1/¥5 4Va5| 0 0 [i/g —i/g]
2 -2 23 0 s)vais |l o oLV /

||
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