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EXAMPLE 2 Find a least-squares solution of Ax = b for

1 1 0 0 -3
1 1 0 0 -1
1 0 1 0 0
A= 1 0 1 0F} b= 2
1 0 0 1 5
|10 0 1] | 1]
SOLUTION Compute
1 1 0 0
11 1 1 1 17f{1 1 0 0 6 2 2 2
AT4 — 1 1 0 0 0 O I 0 1 O _12 2 0 O
—10 0 1 1 0 O 1 0o 1 o] |2 0 2 0
|0 0 0 0 1 1]|1 0 0 1 2 0 0 2
(1 0 0 1
=3
11 1 1 1 17| -1 4
1 1. 0 0 O O 0 —4
Ty —
ATh = 0 0 1 1 0 O 21 2
0o 0 0 0 1 1|5 6
|1
The augmented matrix for A7Ax = ATb is
6 2 2 2 4 1 0 0 1 3
2 2 0 0 —4 N o 1 0 -1 -5
2 0 2 0 2 o o0 1 -1 =2
2 0 0 2 6 o 0 0 0 O

The general solution is x; = 3 — x4, X = —5 + X4, X3 = —2 + x4, and x4 is free. So
the general least-squares solution of Ax = b has the form

-1
2= -5 + 1
1

1

The next theorem gives useful criteria for determining when there is only one least-
squares solution of Ax = b. (Of course, the orthogonal projection b is always unique.)

Let A be an m x n matrix. The following statements are logically equivalent:

a. The equation Ax = b has a unique least-squares solution for each b in R"".
b. The columns of A are linearly independent.
c. The matrix A”A is invertible.

When these statements are true, the least-squares solution X is given by

2= (AT4)"14Tp 4)

Ex 1 hag a wunique {5”9+'S’Lm@f&3 Colufion  cince AT‘( i« Tmverdible
Ex 2 doec wet  Cince ATA 7S net Taver+ible.



When a least-squares solution X is used to produce AX as an approximation to b, the

distance from b to AX is called the least-squares error of this approximation.

EXAMPLE 3 Given A4 and b as in Example 1, determine the least-squares error in
the least-squares solution of Ax = b.
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SOLUTION From Example 1,

2 4 0 1 4
b = 0 and Ax=]0 2 |:2:|= 4
11 1 1 3
Hence
2 4 -2
11 3 8
and

Ib— A%|| = V/(=2)> + (—4)> + 8 = V84

The least-squares error is /84. For any x in R?, the distance between b and the vector
Ax is at least +/84. See Figure 3. Note that the least-squares solution X itself does not
appear in the figure. ]
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