Recall (Sec 6.3 Thm 9) "The best approximation theorem"

Let W be a subspace of \mathbb{R}^n , let \hat{b} be a vector in \mathbb{R}^n .

Then the closest point in W to \hat{b} is $\hat{b} = \text{Proj}_{W} \hat{b}, \text{ the orthogonal projection of } \hat{b} \text{ onto } W.$ I.e. $\|\hat{b} - \hat{b}\| < \|\hat{b} - \vec{r}\| \text{ fir any } \vec{r} \text{ in } W \text{ that's not equal to } \hat{b}.$

Sec 6.5 Least-squares problems

Motivation:

· For applications, we often work with systems

$$A \stackrel{\rightarrow}{x} = \stackrel{\rightarrow}{b}$$

that have no solutions (i.e. are inconsistent)

· We can approximate a solution by finding an \bar{x} that makes $A\bar{x}$ as close as possible to \bar{b} ,

i.e. by finding an \hat{x} that makes $\|\hat{b} - A\hat{x}\|$ as small as possible

This process is called the general least-squares problem

• "least-squares" comes from the fact that $\|\vec{b} - A\vec{x}\| = \int Sum \ af \ cquares$

How to solve the general least-squares problem?

Let A be an $m \times n$ matrix and \hat{b} in R^m Consider the system $A\begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$

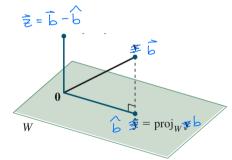
Let W denote Col A=Span [columns of A]

(See Sec 4.2) = $\{ \vec{\tau} : A\vec{x} = \vec{\tau} \text{ for some } \vec{x} \text{ in } \mathbb{R}^n \}$

Ex:
$$A = \begin{bmatrix} 4 & 0 \\ 0 & 2 \\ 1 & 1 \end{bmatrix}$$
 $\overrightarrow{b} = \begin{bmatrix} 2 \\ 0 \\ 11 \end{bmatrix}$

Note $\begin{bmatrix} 4 & 0 & | & 2 \\ 0 & 2 & | & 0 \\ 1 & 1 & | & 11 \end{bmatrix} \longrightarrow \begin{bmatrix} 4 & 0 & | & 2 \\ 0 & 2 & | & 0 \\ -4 & -4 & | & -44 \end{bmatrix} \longrightarrow \begin{bmatrix} 4 & 0 & | & 2 \\ 0 & 4 & | & 0 \\ 0 & -4 & | & -42 \end{bmatrix} \longrightarrow \begin{bmatrix} 4 & 0 & | & 2 \\ 0 & 4 & | & 0 \\ 0 & 0 & | & -42 \end{bmatrix}$ so $A \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \\ 11 \end{bmatrix}$ is inconsistent

Let \hat{b} denote proj \hat{b} , the orthogonal projection of \hat{b} onto W.



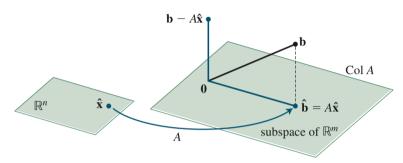
a: Is b in W? Ans: Yes, by def

So \hat{b} is in ColA, so there is \hat{x} in \mathbb{R}^n such that $A\hat{x}=\hat{b}$. Since $\hat{b}=\text{proj}_{W}\hat{b}$ is the closest point in $W=\text{Col}_A$ to \hat{b} , $A\hat{x}=\hat{b}$ is the closest point in $W=\text{Col}_A$ to \hat{b} . That is, $||\hat{b}-\hat{b}|| \leq ||\hat{b}-\hat{v}||$ for all \hat{v} in $W=\text{Col}_A$ i.e. $||\hat{b}-A\hat{x}|| \leq ||\hat{b}-A\hat{x}||$ for all \hat{x} in \mathbb{R}^n If A is $m \times n$ and **b** is in \mathbb{R}^m , a **least-squares solution** of $A\mathbf{x} = \mathbf{b}$ is an $\hat{\mathbf{x}}$ in \mathbb{R}^n such that

$$\|\mathbf{b} - A\hat{\mathbf{x}}\| \le \|\mathbf{b} - A\mathbf{x}\|$$

for all **x** in \mathbb{R}^n .

Note: $\hat{\chi}$ is a least-squares solution of $A\hat{\chi} = \hat{L}$ iff $A\hat{\chi} = \hat{L}$



How do we solve A &= 6?

Suppose \hat{x} is a vector in \mathbb{R}^n satisfying $A\hat{x} = \hat{b}$.

By the Orthogonal Decomposition Theorem (Sec 6.3), $\vec{z} = \vec{b} - \hat{b}$ is orthogonal to $W = Col A = Span \{ cols of A \}$ $= \vec{b} - A \hat{x}$

so B-Ax is orthogonal to each column of A.

So... If \vec{a} in \mathbb{R}^m is any column of A, then $0 = \vec{a} \cdot (\vec{b} - A\hat{x}) = \vec{a}^T (\vec{b} - A\hat{x})$ $\Rightarrow def \cdot \vec{b}$ inner product

Ex. [4 0 1] ([-Ax) = 0

Since à Tis a row of AT, we have

$$\begin{bmatrix} 0 \\ \vdots \\ 0 \end{bmatrix} = A^{\top} \begin{pmatrix} \vec{b} - A \hat{\chi} \end{pmatrix} \qquad \text{Ex:} \qquad \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 4 & 0 & 1 \\ 0 & 2 & 1 \end{bmatrix} \begin{pmatrix} \vec{b} - A \hat{\chi} \end{pmatrix}$$

Thus $\vec{b} = A^T \vec{b} - A^T A \hat{x}$, i.e. $A^T A \hat{x} = A^T \vec{b}$.

Def The matrix equation
$$A^{T}A\hat{x} = A^{T}\hat{b}$$
 represents

a system of equations called the normal equations for $A\vec{x} = \vec{b}$

 E_X : The normal equations for our $A\bar{x} = \bar{b}$ are $A^{T}A \begin{pmatrix} \times_{i} \\ x_{2} \end{pmatrix} = A^{T} \vec{b}$

$$\begin{bmatrix} 4 & 0 & 1 \\ 0 & 2 & 1 \end{bmatrix} \begin{bmatrix} 4 & 0 \\ 0 & 2 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} = \begin{bmatrix} 4 & 0 & 1 \\ 0 & 2 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \\ 11 \end{bmatrix}$$

 $\begin{bmatrix} 17 & 1 \\ 1 & 5 \end{bmatrix} \begin{bmatrix} \times_1 \\ \times_2 \end{bmatrix} = \begin{bmatrix} 19 \\ 11 \end{bmatrix}$

Thm The set of least-squares solutions of $A\bar{x} = \vec{b}$ (Thm 13) is equal to the (nonempty) set Esolutions of the normal equations $A^T A \hat{x} = A^T \hat{b}$

$$\exists x \qquad \begin{bmatrix} 17 & 1 & | & 19 \\ 1 & 5 & | & 11 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & | & 1 \\ 0 & 1 & | & 2 \end{bmatrix}$$

For this example of A and \hat{b} , the equation $A\hat{x} = \hat{b}$ has a unique least-squares solution, $\hat{\chi} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$

EXAMPLE 2 Find a least-squares solution of $A\mathbf{x} = \mathbf{b}$ for

$$A = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} -3 \\ -1 \\ 0 \\ 2 \\ 5 \\ 1 \end{bmatrix}$$

SOLUTION Compute

$$A^{T}\mathbf{a} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 6 & 2 & 2 & 2 & 2 \\ 2 & 2 & 0 & 0 & 0 \\ 2 & 0 & 2 & 0 & 0 \\ 2 & 0 & 0 & 2 & 0 \end{bmatrix}$$

$$A^{T}\mathbf{b} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} -3 \\ -1 \\ 0 \\ 2 \\ 5 \\ 1 \end{bmatrix} = \begin{bmatrix} 4 \\ -4 \\ 2 \\ 6 \end{bmatrix}$$

The augmented matrix for $A^T A \mathbf{x} = A^T \mathbf{b}$ is

$$\begin{bmatrix} 6 & 2 & 2 & 2 & 4 \\ 2 & 2 & 0 & 0 & -4 \\ 2 & 0 & 2 & 0 & 2 \\ 2 & 0 & 0 & 2 & 6 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 1 & 3 \\ 0 & 1 & 0 & -1 & -5 \\ 0 & 0 & 1 & -1 & -2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

The general solution is $x_1 = 3 - x_4$, $x_2 = -5 + x_4$, $x_3 = -2 + x_4$, and x_4 is free. So the general least-squares solution of $A\mathbf{x} = \mathbf{b}$ has the form

$$\hat{\mathbf{x}} = \begin{bmatrix} 3 \\ -5 \\ -2 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} -1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$$

The next theorem gives useful criteria for determining when there is only one least-squares solution of $A\mathbf{x} = \mathbf{b}$. (Of course, the orthogonal projection $\hat{\mathbf{b}}$ is always unique.)

Let A be an $m \times n$ matrix. The following statements are logically equivalent:

- a. The equation $A\mathbf{x} = \mathbf{b}$ has a unique least-squares solution for each \mathbf{b} in \mathbb{R}^m .
- b. The columns of A are linearly independent.
- c. The matrix $A^{T}A$ is invertible.

When these statements are true, the least-squares solution $\hat{\mathbf{x}}$ is given by

$$\hat{\mathbf{x}} = (A^T A)^{-1} A^T \mathbf{b} \tag{4}$$

Ex 1 has a unique least-squares solution since ATA is invertible Ex 2 does not since ATA is not invertible.

When a least-squares solution $\hat{\mathbf{x}}$ is used to produce $A\hat{\mathbf{x}}$ as an approximation to \mathbf{b} , the distance from \mathbf{b} to $A\hat{\mathbf{x}}$ is called the **least-squares error** of this approximation.

EXAMPLE 3 Given A and **b** as in Example 1, determine the least-squares error in the least-squares solution of $A\mathbf{x} = \mathbf{b}$.

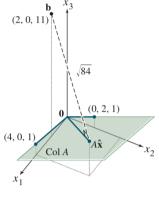


FIGURE 3

SOLUTION From Example 1,

$$\mathbf{b} = \begin{bmatrix} 2 \\ 0 \\ 11 \end{bmatrix} \quad \text{and} \quad A\hat{\mathbf{x}} = \begin{bmatrix} 4 & 0 \\ 0 & 2 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 4 \\ 4 \\ 3 \end{bmatrix}$$

Hence

$$\mathbf{b} - A\hat{\mathbf{x}} = \begin{bmatrix} 2\\0\\11 \end{bmatrix} - \begin{bmatrix} 4\\4\\3 \end{bmatrix} = \begin{bmatrix} -2\\-4\\8 \end{bmatrix}$$

and

$$\|\mathbf{b} - A\hat{\mathbf{x}}\| = \sqrt{(-2)^2 + (-4)^2 + 8^2} = \sqrt{84}$$

The least-squares error is $\sqrt{84}$. For any \mathbf{x} in \mathbb{R}^2 , the distance between \mathbf{b} and the vector $A\mathbf{x}$ is at least $\sqrt{84}$. See Figure 3. Note that the least-squares solution $\hat{\mathbf{x}}$ itself does not appear in the figure.