Sec 4.5 The dimension of a vector space

I. Def of dimension

Thm If a vector space V has a basis $B = \{b_1, b_2, ..., b_n\}$ and (Thm 10) S is any set in V containing more than n elements, then S must be linearly dependent.

Contrapositive Statement (equivalent):

If S is any set in V that is linearly independent, then S contains no more than n elements.

Thm If a vector space V has a basis of n elements, (Thm 11) then every basis of V must consist of exactly n elements.

Def: If a vector space V has a finite spanning set, then V is said to be finite-dimensional, and the dimension of V is

dim V = the number of elements in a basis for V. The dimension of the zero vector space { zero element } is defined to be 0.

If V doesn't have a finite spanning set, then V is said to be infinite-dimensional.

Ex 1. dim R=n because the standard basis for R" $\{\hat{e}_1,\hat{e}_2,...,\hat{e}_n\}$

 $\dim \mathbb{R}^3 = 3$ because \mathbb{R}^3 has a basis $\{0, 0, 0\}$

2. dim In= n+1 because the standard basis for In is $\{1, t, t^2, ..., t^n\}$

dim P2=3 because P2 has a basis (1,t,t2) so P2 is isomorphic to R3 because Thm 9 (in Sec 4.4) says every vector space of dimension n is isomorphic to R

3. P = [all polynomials] is infinite - dimensional The space of all continuous functions is infinite-dimensional.

II. Subspaces of R

Ex 7 from Sec 4.4 (previous lecture)

The space $H = \text{Span}\{\vec{v}_1, \vec{v}_2\}$ where $\vec{v}_1 = \begin{bmatrix} 3 \\ 6 \\ 2 \end{bmatrix}, \vec{v}_2 = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$ has a basis $\mathcal{B} = \{\vec{v}_1, \vec{v}_2\}$ so $\dim H = 2$

Picture Basis $B = \{\vec{v}_1, \vec{v}_2\}$ Imposes a coordinate system ("graph paper") on the plane H in 1R3

Note: • H is a subspace of \mathbb{R}^3

· H is isomorphic to the plane \mathbb{R}^2 (not \mathbb{R}^3) because Thm 9 (in Sec 4.4) says every vector space of dimension n is isomorphic to R

Fact The following are all subspaces of R3 (classified by dimension):

- The only 0-dimensional subspace is the zero subspace { [o] {
- * Every 1-dimensional subspace of \mathbb{R}^3 is a line L through the origin. L can be spanned by any nonzero vector contained in L.
- · Every 2-dimensional subspace of \mathbb{R}^3 is a plane H through the origin. H can be spanned by any two linearly independent vectors in H
 - The only 3-dimensional subspace of \mathbb{R}^3 is \mathbb{R}^3 itself. \mathbb{R}^3 can be spanned by any three linearly independent vectors in \mathbb{R}^3 , by the Invertible Matrix Theorem

Sample subspaces of \mathbb{R}^3

III. The basis theorem

Thm Suppose V is a finite-dimensional vector space, (Thm 12) and let H be a subspace of V.

- (a) Any linearly independent set S in H (if S is not already a basis for H) can be expanded to a basis for H
- (b) $\dim H \leq \dim V$

Remark: To be a basis for a vector space V, a set S must be:

- · a spanning set of V, AND
- · linearly independent (usually easier to verify than spanning)

BUT, if you know the dimension of V, and you know S has the correct number of elements, it's enough to show one of the two properties.

Thm (The Basis Theorem)

(Thm 13) Let V be a vector space with dim $V = p \geqslant 1$.

- (a) If S is a linearly independent set of p elements in V_3 then S is automatically a basis for V_3 .
- (b) If S is a set of p elements such that $V= span\{S\}$, then S is automatically a basis for V.

IV. The dimensions of Nul A & Col A (and Row A)

Def Let A be an mxn matrix.

- · The rank of A is dim Col A (notation: rank A)
- · The nullity of A is Lim Nul A (notation: nullity A)

 $\frac{\text{Note}}{\text{Note}} \quad \text{vank } A = \text{number of pivot columns of } A$ $= \dim \text{Row} A$

Why? Our algorithm for finding a basis for Col A is to take $B = \{pivot \ Columns \ of \ the \ original \ matrix \ A\}$ (See Sec 4.3 pg 225-227)

• Our algorithm for finding a basis for Row A is to take B = [nonzero rows of a row echelon form of A], and each nonzero row corresponds to a pivot position (See Sec 4.3 pg 227)

Note

nullity A = number of free variables

= number of columns of A that are not pivot columns

Why? The algorithm for finding a basis for Nul A is to find a vector for each free variable. (See Sec 4.2 pg 213-214)

Thm (The Rank Theorem)

(Thm 14) rank A + nullify A = number of columns in A

Proof.

rank A + nullity A = # of pivot columns by above notes

= # of columns

$$\frac{E_{X}}{E_{X}} \quad \text{Let } A = \begin{bmatrix} -3 & 6 & -1 & 1 & -7 \\ 1 & -2 & 2 & 3 & -1 \\ 2 & -4 & 5 & 8 & -4 \end{bmatrix}.$$

Row reduce A to an echelon form:

Three nonpivot columns $\begin{bmatrix}
1 & -2 & 2 & 3 & -1 \\
0 & 0 & 1 & 2 & -2 \\
0 & 0 & 0 & 0
\end{bmatrix}$

- Then: 1) dim Col A = 2 = dim Row A
- 3) dim Nul A = 3

2) rank A = 2

4) Nullity A = 3

(heck: rank A + nullity A = number of columns of A2

3

5

Looking ahead: We'll see later that ROWA and Nul A

are perpendicular to each other.

Cartoon in R3:

O Nul A

I. The Invertible Matrix Theorem (continued)

Let A be an nxn matrix. TFAE:

- (i) A is invertible
- (2) The columns of A form a basis of Rn
- (3) Col A = Rⁿ
- (4) rank A = n
- (5) nullify A = 0 (the number zero)
- (6) Nul A= {0} (the zero vector space)

 the zero vector {0} in R"

Practice problems at the end of class

True or false? Give a reason (in 1-2 sentences)

Here V is a nonzero finite-dimensional vector space

(1) If dim V= f and if S is a linearly dependent subset of V, then S contains more than f elements

Answer: False. Counter example: Let $V = \mathbb{R}^4$ and let $S = \begin{bmatrix} 1 \\ 3 \\ 4 \end{bmatrix}$, $\begin{bmatrix} 2 \\ 4 \\ 8 \end{bmatrix}$. Here S is linearly dependent and S has no more than 4 elements.

(2) If S spans V and if T is a subset of V that contains more elements than S, then T is linearly dependent.

Answer: True. Since S is a spanning set for V, S contains a basis & for V (by "The spanning set Theorem" part (b) Thm 5 of Sec 4.3 pg 225). Since T has more elements than S, T also has more elements than B, so (by Thm 10 of Sec 4.5 pg 241) T is linearly dependent.

(3)

Example 6

- a. If A is a 7×9 matrix with nullity 2, what is the rank of A?
- b. Could a 6×9 matrix have nullity 2?

Solution

- a. Since A has 9 columns, (rank A) + 2 = 9, and hence rank A = 7.
- b. No. If a 6×9 matrix, call it B, had a two-dimensional null space, it would have to have rank 7, by the Rank Theorem. But the columns of B are vectors in \mathbb{R}^6 , and so the dimension of Col B cannot exceed 6; that is, rank B cannot exceed 6.