Sec 4.1 Vector spaces and subspaces

» Observation 1: Many linear algebra concepts can be defined in terms of
addition and scalar multiplication
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Dimension
» Observation 2: Addition and scalar multiplication make sense for many
other mathematical objects.
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Vector space

Goals: Generalize what we've learned so far about vectors to other kinds of
objects we can add and scalar multiply.

Definition: A vector space

A vector space is a set V in which
® there is a rule to add any two elements v, w in V, and
® there is a rule to multiply any v in V by any scalar r in R,

such that the axioms on the next slide hold.

Intuitively, a vector space is a set of mathematical objects which collectively
behave like a set of vectors.

Possibly confusing terminology

® Elements of a vector space may not be vectors in R"

® Some textbooks (like ours) use ‘vector’ to refer to any element of a
vector space.



Axioms for vector space

® y+v=v+uforall u,vin V. (edditton s C"MM“"‘"“"‘@
* (utv)+w=u+(v+w)forallu,v,win V. [ jaiicn s astectotive)
® There is an element 0 in V, such that for all v in V,/aadis7ve Tdenmtidy
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® For each v in V, there exists —v in V with _ ce
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® r(lu+v)=ru+rvforall u,vinV and any rin R.} drste AR

® (r+s)v=rv+svforall vin V and any r,s in R,

® r(sv) = (rs)v forall vin V and any r,s in R. (multiplication s assotiodive)

® There is an element 1 such that 1v = v for all v in V. Cmul*’“?hmﬁ\"’- Ventidy,
clled " exagts >

An axiom is a fact that can’t be reduced to a simpler property.

Two examples of vector spaces: R” and P

The set of vectors of height n is a vector space!

Fact (The motivating examples of vector spaces)

For each positive integer n, the set R" is a vector space.

Fact (Our first non-vector vector space)

The set of polynomials in x is a vector space, denoted PP.

Useful fact: Two polynomials are equal if and only if they have the coefficients
when written in standard form: a,x” 4+ a,_1x" "' + -+ - 4+ a1x + ao.
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Exercise

» Write x° as a linear combination of 1, 1 + x, and 1 + 2x + x°.

(Note: Numbers like 0, 1, and 7 count as constant polynomials!)
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Definition: The degree of a polynomial

The degree of a non-zero polynomial in x is the largest power of x with
non-zero coefficient.

We define deg(0) := —oo, mostly to avoid an extra case.

Fact (Polynomials of degree at most n)

For each positive integer n, the set of polynomials in x of degree at most n is a
vector space, denoted Pp,.

Examples:
» P; consists of polynomials ax + b, for a, b in R.

» The three polynomials (x — 1)}, x®*+3x, and 2 are in P;, but the
polynomials x* and x® — 2x® are not.

> Py is just the constant polynomials like 0, 1, and 7, which are the same as
numbers, so Py = R.

A non-example: Consider the set of polynomials of degree exactly 3.
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By a sequence, we mean an infinite list of real numbers.

Examples of sequences

0,1,1,2,3,5,8,13,21, ... (the Fibonacci sequence)
2,3,5,9,11,13,17, ... (prime numbers)
1,3,9,27,81,243, ... (powers of 3)
7,12, -5,7,3.5,7, ... (Just some random numbers)

Fact (The set of sequences is a vector space)

The set of sequences is a vector space, denote S. Addition and scalar
multiplication are defined term-wise.

Fact (Sets of matrices of fixed size are vector spaces)

For positive integers m and n, the set of m X n-matrices is a vector space,
denoted R™*".

Addition and scalar multiplication are the matrix versions.

Example: Let's say we know P is a vector space, but not Ps.

» To add two polynomials in IP3, add them as polynomials in P, and observe
the result is still in Ps.

P Scalar multiplication also does not leave Ps.

Since the axioms hold in P, they automatically hold in P3. So Ps is a vector
space.

Definition: Subspace of a vector space

Let V' be a vector space. A subspace of V is a non-empty subset W of V

which is... Q. Shows e
L. . zero  element
b.e® closed under addition; that is, s fn

for all v,w in W, the sum v+ w is in W, and

C e closed under scalar multiplication; that is,

for all vin W and c in R, the product cv is in W.

Fact (Subspaces are vector spaces)

A subspace of a vector space is also a vector space.



Exercise

Let S denote the set of polynomials in P> such that 7(5) = 0. That is, CAMPLE
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Show whether S is a subspace or not a subspace of P». ANSLER
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Exercise
Let T denote the set of polynomials in P, such that f(5) = 1. That is,

T = {f(x)in Py | £(5) = 1}.

Show whether T is a subspace or not a subspace of P,.
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[Il. A subspace spanned by a set

Definition: Span{vy, va, ...,

The span of a set of objects is the set of their linear combinations.

Example:
1 —10 1 —10
Span 1 t{1] +s| O forall t,s in R
0 0 —4
2 1 2 3
Span 4 , |51, 6 =<r |4 +s |5 +¢t|6] forallr,s,tinR
7 8 9 7 8 9

Theorem: Spans are subspaces

The span of a set of objects in a vector space V is a subspace of V.

» Span{vi, va,..., vy} is called the subspace spanned by {vi, vs, ..., v,}.

Definition: Spanning sets

A spanning set (or generating set) of H is a set of objects whose span is H.

» If H=Span{wvi, va,...,vp}, then {vi, v, ..., v, } is a spanning set for H

Exercise
Let W be the subset of R® consisting of vectors whose second entry is the
average of the other two. Show that W is a subspace of R>.
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