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Sec 4.1 Vector spaces and subspaces

▶ Observation 1: Many linear algebra concepts can be defined in terms of
addition and scalar multiplication

Addition and
Scalar multi.
of vectors

Linear
Combinations

Linear
Transformations

Subspaces

Bases

Dimension

...combine into......are preserved by...
...are closed under...

...are efficiently
described by...

...are used
to define...

...which are
counted by...

▶ Observation 2: Addition and scalar multiplication make sense for many
other mathematical objects.

Examples

▶ Polynomials (1 + x2) + (7− 3x + x3) 4(1 + 3x + 4x2)

▶ Real-valued functions of x sin(x) + ex 4 ln(x)
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Vector space

Goals: Generalize what we’ve learned so far about vectors to other kinds of
objects we can add and scalar multiply.

Definition: A vector space

A vector space is a set V in which

• there is a rule to add any two elements v ,w in V , and

• there is a rule to multiply any v in V by any scalar r in R,
such that the axioms on the next slide hold.

Intuitively, a vector space is a set of mathematical objects which collectively
behave like a set of vectors.

Possibly confusing terminology

• Elements of a vector space may not be vectors in Rn

• Some textbooks (like ours) use ‘vector’ to refer to any element of a
vector space.
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Axioms for vector space

Axioms (essential properties) of addition

• u + v = v + u for all u, v in V .

• (u + v) + w = u + (v + w) for all u, v ,w in V .

• There is an element 0 in V , such that for all v in V ,

v + 0 = 0 + v = v

• For each v in V , there exists −v in V with

v + (−v) = (−v) + v = 0

Axioms (essential properties) of scalar multiplication

• r(u + v) = ru + rv for all u, v in V and any r in R.
• (r + s)v = rv + sv for all v in V and any r , s in R.
• r(sv) = (rs)v for all v in V and any r , s in R.
• There is an element 1 such that 1v = v for all v in V .

An axiom is a fact that can’t be reduced to a simpler property.
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Two examples of vector spaces: Rn and P

The set of vectors of height n is a vector space!

Fact (The motivating examples of vector spaces)

For each positive integer n, the set Rn is a vector space.

Fact (Our first non-vector vector space)

The set of polynomials in x is a vector space, denoted P.

Useful fact: Two polynomials are equal if and only if they have the coefficients
when written in standard form: anx

n + an−1x
n−1 + · · ·+ a1x + a0.

▶ Exercise: Determine whether (x − 4)3 is a scalar multiple of x2 + x + 1.



Slide 5/12

Exercise
Write x2 as a linear combination of 1, 1 + x , and 1 + 2x + x2.
(Note: Numbers like 0, 1, and 7 count as constant polynomials!)
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Definition: The degree of a polynomial

The degree of a non-zero polynomial in x is the largest power of x with
non-zero coefficient.

We define deg(0) := −∞, mostly to avoid an extra case.

Fact (Polynomials of degree at most n)

For each positive integer n, the set of polynomials in x of degree at most n is a
vector space, denoted Pn.

Examples:

▶ P1 consists of polynomials ax + b, for a, b in R.
▶ The three polynomials (x − 1)3, x2 + 3x , and 2 are in P3, but the

polynomials x4 and x8 − 2x3 are not.

▶ P0 is just the constant polynomials like 0, 1, and 7, which are the same as
numbers, so P0 = R.

A non-example: Consider the set of polynomials of degree exactly 3.
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By a sequence, we mean an infinite list of real numbers.

Examples of sequences

0, 1, 1, 2, 3, 5, 8, 13, 21, ... (the Fibonacci sequence)

2, 3, 5, 9, 11, 13, 17, ... (prime numbers)

1, 3, 9, 27, 81, 243, ... (powers of 3)

7, 12,−5, π, 3.5, 7, ... (Just some random numbers)

Fact (The set of sequences is a vector space)

The set of sequences is a vector space, denote S. Addition and scalar
multiplication are defined term-wise.

Fact (Sets of matrices of fixed size are vector spaces)

For positive integers m and n, the set of m × n-matrices is a vector space,
denoted Rm×n.

Addition and scalar multiplication are the matrix versions.
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Example: Let’s say we know P is a vector space, but not P3.

▶ To add two polynomials in P3, add them as polynomials in P, and observe
the result is still in P3.

▶ Scalar multiplication also does not leave P3.

Since the axioms hold in P, they automatically hold in P3. So P3 is a vector
space.

Definition: Subspace of a vector space

Let V be a vector space. A subspace of V is a non-empty subset W of V
which is...

• closed under addition; that is,

for all v,w in W , the sum v + w is in W , and

• closed under scalar multiplication; that is,

for all v in W and c in R, the product cv is in W .

Fact (Subspaces are vector spaces)

A subspace of a vector space is also a vector space.
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Exercise
Let S denote the set of polynomials in P2 such that f (5) = 0. That is,

S = {f (x) in P2 | f (5) = 0}.
Show whether S is a subspace or not a subspace of P2.
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Exercise
Let T denote the set of polynomials in P2 such that f (5) = 1. That is,

T = {f (x) in P2 | f (5) = 1}.
Show whether T is a subspace or not a subspace of P2.
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III. A subspace spanned by a set

Definition: Span{v1, v2, ..., vp}
The span of a set of objects is the set of their linear combinations.

Example:

Span


11
0

 ,

−10
0
−4

 :=

t

11
0

+ s

−10
0
−4

 for all t, s in R


Span


14
7

 ,

25
8

 ,

36
9

 :=

r

14
7

+ s

25
8

+ t

36
9

 for all r , s, t in R


Theorem: Spans are subspaces

The span of a set of objects in a vector space V is a subspace of V .

▶ Span{v1, v2, ..., vp} is called the subspace spanned by {v1, v2, ..., vp}.

Definition: Spanning sets

A spanning set (or generating set) of H is a set of objects whose span is H.

▶ If H = Span{v1, v2, ..., vp}, then {v1, v2, ..., vp} is a spanning set for H
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Exercise
Let W be the subset of R3 consisting of vectors whose second entry is the
average of the other two. Show that W is a subspace of R3.


