Math 2220 Linear Algebra Sec 1.9 The matrix of a linear transformation

<u>Main Thm</u>: Every linear map from $\mathbb{R}^n \to \mathbb{R}^m$ can be described by a matrix transformation $\mathbf{x} \mapsto A\mathbf{x}$.

1 The standard matrix for a linear transformation

To find this matrix A, it's enough to look at the columns of the $n \times n$

$$\mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

1.1 Example

Suppose we know that T is a linear transformation $\mathbb{R}^3 \to \mathbb{R}^2$ such that

$$T(\mathbf{e}_1) = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, T(\mathbf{e}_1) = \begin{bmatrix} 3 \\ 4 \end{bmatrix}, T(\mathbf{e}_3) = \begin{bmatrix} 5 \\ 6 \end{bmatrix}.$$

With no additional information, find a formula for the image $T(\mathbf{x})$ for an arbitrary \mathbf{x} in \mathbb{R}^3 .

Sol: Write
$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + = x_1 \mathbf{e}_1 + x_2 \mathbf{e}_2 + x_3 \mathbf{e}_3 + x_4 \mathbf{e}_4 + x_4 \mathbf{e}_5 + x_5 \mathbf{$$

Then we have

$$T(\mathbf{x}) = T(x_1 \mathbf{e}_1 +$$

1.2 Theorem

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear map. Then there is a unique _____ matrix A such that

$$T(\mathbf{x}) = \underline{\qquad}$$
 for all \mathbf{x} in $\underline{\qquad}$

This unique matrix is the concatenation $A = [T(\mathbf{e}_1) \ T(\mathbf{e}_2) \ ... \ T(\mathbf{e}_n)]$

1.3 Example

We know T is a linear transformation $R^3 \to \mathbb{R}^2$ such that $T(\mathbf{e}_1) = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, T(\mathbf{e}_1) = \begin{bmatrix} 3 \\ 4 \end{bmatrix}, T(\mathbf{e}_3) = \begin{bmatrix} 5 \\ 6 \end{bmatrix}$. Find the standard matrix for T.

 $\underline{\mathrm{Sol}}$: A =

2 Geometric linear maps of \mathbb{R}^2

2.1 Rotation

The map $R: \mathbb{R}^2 \to \mathbb{R}^2$ that rotates each point in \mathbb{R}^2 about the origin through an angle (_______ for a positive θ) is a linear map. What is the standard matrix A of this rotation map R?

Sol:

means
$$R\left(\begin{bmatrix}1\\0\end{bmatrix}\right) = \begin{bmatrix}\cos\theta\\\sin\theta\end{bmatrix}$$

means
$$R\left(\begin{bmatrix}0\\1\end{bmatrix}\right) =$$

2.2 Reflection

The map $F: \mathbb{R}^2 \to \mathbb{R}^2$ that reflects each point in \mathbb{R}^2 through a line ℓ (that passes through the origin) is a linear map.

Ex: The standard matrix for the reflection through the line y = x is ...

2.3 Projection

The mapping $P: \mathbb{R}^3 \to \mathbb{R}^3$

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} \mapsto \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} \end{bmatrix}$$

is called a because P projects points in \mathbb{R}^3 onto the xy-plane.

3 Existence and uniqueness questions: surjectivity

<u>Definition</u> A map $T: \mathbb{R}^n \to \mathbb{R}^m$ is called _____ or ___ if ...

Cartoon:

3.1 Examples

3.1.1 Not onto

The projection $P: \mathbb{R}^3 \to \mathbb{R}^3$ given by $\begin{bmatrix} x \\ y \\ z \end{bmatrix} \mapsto \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x \\ y \\ 0 \end{bmatrix}$ _____ onto.

 $\underline{\text{Why}}$?

For example,

$$\mathbf{b} = \begin{bmatrix} \\ \\ \end{bmatrix}$$
 ____ in the ____ \mathbb{R}^3 ,

but **b** _____ the image $P(\mathbf{x})$ of any **x** in the _____ R^3 .

3.1.2 Onto

However, The projection $P': \mathbb{R}^3 \to \mathbb{R}^2$ given by $\begin{bmatrix} x \\ y \\ z \end{bmatrix} \mapsto \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} \\ \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix}$ _____ onto

Why?

For any
$$\begin{bmatrix} x \\ y \end{bmatrix}$$
 in the codomain _____, we have $P'\left(\begin{bmatrix} \\ \end{bmatrix}\right) = \begin{bmatrix} x \\ y \end{bmatrix}$, so every vector $\begin{bmatrix} x \\ y \end{bmatrix}$ is the codomain \mathbb{R}^2 _____ in the _____ of P' .

3.1.3 Other examples

What about the linear transformation whose standard matrix is the following?

$$\begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 5 & 6 & 7 \\ 0 & 0 & 0 & 8 \end{bmatrix}$$

First & Last Name:

In general, we can answer this existence question by looking at an echelon form of the standard matrix A of the linear map T.

3.2 Theorem

Let A be an $m \times n$ matrix. Then the following are equivalent (TFAE):

- I. For each $\mathbf{b} \in \mathbb{R}^m$, the equation $A\mathbf{x} = \mathbf{b}$
- II. The columns of A \mathbb{R}^m
- III. A has a pivot in every _____
- IV. The matrix transformation $T: \mathbb{R}^n \to \mathbb{R}^m, \mathbf{x} \mapsto A\mathbf{x}$

3.2.1 Example

If T is the linear transformation whose standard matrix can be row-reduced to an echelon form

$$\begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 5 & 6 & 7 \\ 0 & 0 & 0 & 8 \end{bmatrix},$$

then T ____ onto.

Why?

3.2.2 Example

If T is the linear transformation whose standard matrix can be row-reduced to an echelon form

$$\begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 5 & 6 & 7 \\ 0 & 0 & 0 & 0 \end{bmatrix},$$

then T _____ onto.

 $\underline{\text{Why}}$?

3.2.3 Exercise

- (a) Write an echelon form of the standard matrix of an non-onto linear transformation.
- (b) Write an echelon form of the standard matrix of an onto linear transformation.

4 Existence and uniqueness questions: injectivity

<u>Definition</u> A map $T: \mathbb{R}^n \to \mathbb{R}^m$ is called ______ or ____ if ...

Cartoon:

 $\underline{\text{Ex}}\text{: The projection }P:\mathbb{R}^3\to\mathbb{R}^3\text{ given by }\begin{bmatrix}x\\y\\z\end{bmatrix}\mapsto\begin{bmatrix}1&0&0\\0&1&0\\0&0&0\end{bmatrix}\begin{bmatrix}x\\y\\z\end{bmatrix}=\begin{bmatrix}x\\y\\0\end{bmatrix}\text{ _________ one-to-one.}$

 $\underline{\text{Why}}$?

For example,

4.1 Theorem

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear map. Then T is ______ if and only if the equation $T(\mathbf{x}) = \mathbf{0}$

Ex: The projection $P': \mathbb{R}^3 \to \mathbb{R}^2$ given by $\begin{bmatrix} x \\ y \\ z \end{bmatrix} \mapsto \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$ 1-to-1.

 $\underline{\text{Why}}$?

 $P'\left(\begin{bmatrix} \\ \end{bmatrix}\right) = \begin{bmatrix} 0\\ 0 \end{bmatrix}$. So $T(\mathbf{x}) = \mathbf{0}$ _____ solutions other than the ____ solution.

First & Last Name:

4.2 Theorem

Let A be a matrix. Then the following are equivalent (TFAE):

- I. The equation $A\mathbf{x} = \mathbf{0} \dots$
- II. The columns of A are
- III. # of pivots of A =
- IV. The matrix transformation $\mathbf{x} \mapsto A\mathbf{x}$ is

4.2.1 Example

If T is the linear transformation whose standard matrix can be row-reduced to an echelon form

$$\begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 5 & 6 & 7 \\ 0 & 0 & 0 & 8 \end{bmatrix},$$

then T _____ one-to-one.

Why? There is _____ free variable for the solution for $A\mathbf{x} = \mathbf{0}$, so $A\mathbf{x} = \mathbf{0}$ has

4.2.2 Example

If T is the linear transformation whose standard matrix can be row-reduced to an echelon form

$$\begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 5 & 6 & 7 \\ 0 & 0 & 0 & 0 \end{bmatrix},$$

then T one-to-one.

<u>Why?</u> The solution set of $A\mathbf{x} = \mathbf{0}$ has _____ free variables, so the columns of A are ____ linearly independent.

4.2.3 Example

If T is the linear transformation whose standard matrix can be row-reduced to an echelon form

$$\begin{bmatrix} 1 & 0 \\ 2 & 4 \\ 0 & 0 \end{bmatrix},$$

then T _____ one-to-one.

Why?

By inspection, we see that the columns of A _____ linearly independent because